Skip to main content

No project description provided

Project description

FBGEMM_GPU

FBGEMM_GPU-CPU CI FBGEMM_GPU-CUDA CI FBGEMM_GPU-ROCm CI

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance PyTorch GPU operator libraries for training and inference. The library provides efficient table batched embedding bag, data layout transformation, and quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch packages (2.1+) that are built against those CUDA versions.

See the full Documentation for more information on building, installing, and developing with FBGEMM_GPU, as well as the most up-to-date support matrix for this library.

Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

For contributions, please see the CONTRIBUTING file for ways to help out.

License

FBGEMM_GPU is BSD licensed, as found in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fbgemm_gpu_nightly_cpu-2025.4.20-cp313-cp313-manylinux_2_28_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2025.4.20-cp313-cp313-manylinux_2_28_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ ARM64

fbgemm_gpu_nightly_cpu-2025.4.20-cp312-cp312-manylinux_2_28_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2025.4.20-cp312-cp312-manylinux_2_28_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

fbgemm_gpu_nightly_cpu-2025.4.20-cp311-cp311-manylinux_2_28_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2025.4.20-cp311-cp311-manylinux_2_28_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

fbgemm_gpu_nightly_cpu-2025.4.20-cp310-cp310-manylinux_2_28_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2025.4.20-cp310-cp310-manylinux_2_28_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

fbgemm_gpu_nightly_cpu-2025.4.20-cp39-cp39-manylinux_2_28_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2025.4.20-cp39-cp39-manylinux_2_28_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.4.20-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.4.20-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2f082b4f1a335ed111603d276e1658ff833cbba80961cb28f074c3c1a93de9da
MD5 e0755b426ddf8c598c407d6318a09e5c
BLAKE2b-256 24c02b19a5f3db06e40708c29a97c05fff714ddc9bef140c5e017ed1a060c172

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.4.20-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.4.20-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c4926d0c493b7fb5c079d5f9fae843075c81515a064bb76e1e4eec57c2b663b7
MD5 b215314a275c4916b03b4666dd52ebf6
BLAKE2b-256 e2f9518cc2789617e1fe4bdb71b7aed4c09cbc359caa0502dc0977885ab77bea

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.4.20-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.4.20-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 13e9d914b51fcd18ec6c74527966640081eb0215b5c24dfae369427ca779cac4
MD5 541aaab4325f45ca1a011e8ac4edb581
BLAKE2b-256 3b997e3cfb05924bcfa4952c17c9c17af251abcb4326053b3dde30c2eb1eec14

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.4.20-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.4.20-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 06bd3ef1633e4bacb020e942f8b91b92a06fe5ea75c6fa9767cc3dafd373e074
MD5 5fcf9f99eab3899a8ae9c441b41ca40a
BLAKE2b-256 e91278d670c8680fa268b6280130ebee916e353faf6e8fa6fe66e75a601cac5c

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.4.20-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.4.20-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 488513f91b4b2bd7f63ec24a174ec8c73b9e9a54b2542b6d621e332db3f4b398
MD5 eb6ee50ee44e69d39f222b3fec23a13c
BLAKE2b-256 0a50bbaf0bfbb0791f433255dec6b02876ea0447603c999b6b3c5b27554a519b

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.4.20-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.4.20-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 339bff3010be7c6c1699da12400daa0bd9d63b9c2e83f56c9245182663539aa4
MD5 694f507b2680455f47d84d77fdbe2524
BLAKE2b-256 f8942054131270c00ceb55b99cce5758ea8338f00e37f76ccb23244193343c31

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.4.20-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.4.20-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 63550a6c5c1dc8d5271a770bf94f35a8e6a9e936d02f3023fd6e1e85ab06879b
MD5 ba5621010c6c3af5d0d6ad7818539dca
BLAKE2b-256 1e1657a697288da79e266c6cb54871b0e9ef18a0889dce308ee460bcb32fc44d

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.4.20-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.4.20-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f6da5bfd104a0be2e0bb6b4ea866899db1e2e7961c37195a612881691a9e2f7d
MD5 fbf56665f7261f8a55a7c3ef8316ba74
BLAKE2b-256 a35e5753ce0b1801bc0b9465b42c8725bbbed62879d69fb79bf6b51e860ea117

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.4.20-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.4.20-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 51039885147969461832dbfdc265b36bd3472e9dbdb3d0a2c8231d5395879fba
MD5 d35d6b4b06098ed19495f185c5b949cf
BLAKE2b-256 433577f2084c706f8537e81ba82593a5bf5409f1a057c9b8e48296ce5e725535

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.4.20-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.4.20-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 382fe6dc8ba77a5e2b7597beb4a225b88479b3f90819b1a173e9a999208bb3ce
MD5 c72fe0c4a36330abd650be0ded56d971
BLAKE2b-256 187692c7866459274103e60df59ca5e5aeb50d5d03eaf4f44a1869eac6ac4501

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page