Skip to main content

No project description provided

Project description

FBGEMM_GPU

FBGEMM_GPU-CPU CI FBGEMM_GPU-CUDA CI FBGEMM_GPU-ROCm CI

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance PyTorch GPU operator libraries for training and inference. The library provides efficient table batched embedding bag, data layout transformation, and quantization supports.

See the full Documentation for more information on building, installing, and developing with FBGEMM_GPU, as well as the most up-to-date support matrix for this library.

Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

For contributions, please see the CONTRIBUTING file for ways to help out.

License

FBGEMM_GPU is BSD licensed, as found in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fbgemm_gpu_nightly_cpu-2025.7.12-cp313-cp313-manylinux_2_28_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2025.7.12-cp313-cp313-manylinux_2_28_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

fbgemm_gpu_nightly_cpu-2025.7.12-cp312-cp312-manylinux_2_28_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2025.7.12-cp312-cp312-manylinux_2_28_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

fbgemm_gpu_nightly_cpu-2025.7.12-cp311-cp311-manylinux_2_28_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2025.7.12-cp311-cp311-manylinux_2_28_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

fbgemm_gpu_nightly_cpu-2025.7.12-cp310-cp310-manylinux_2_28_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2025.7.12-cp310-cp310-manylinux_2_28_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

fbgemm_gpu_nightly_cpu-2025.7.12-cp39-cp39-manylinux_2_28_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2025.7.12-cp39-cp39-manylinux_2_28_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ ARM64

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.7.12-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.7.12-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 97f5213efeb5a95f91764bd4b42a7bc35dfde590fc25c9c6d2175f0390fe4d97
MD5 80ce2e3a44e59a3721e7f4079e020900
BLAKE2b-256 c942a2eb9cf2f550b1efdc663a1a801487d1e45660f6cac51c4ff62644416139

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.7.12-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.7.12-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 54b7064d5eb10450ec6de587d7c012a8689f5a5174290fcbb81889967dc55a35
MD5 5acbb855b6487ced7cbb04ab664d3f82
BLAKE2b-256 03a4b29d6e4b2181e77afdb0ab562480ebd8bfa7fb457a205dbfd52a30430daa

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.7.12-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.7.12-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 26cbcf0a01b17546281425a12f3960a31761bcc1d5748423f72cbb1fe13d23b3
MD5 3f5b6b2be0bc04b783b1d4eac902cf80
BLAKE2b-256 92282b0b0ed99c37560280374f0b4a216a433650d39451e5db9495898abe1f00

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.7.12-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.7.12-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 57f24f59002e24f3b42cf970cade64c2762cff1367ce6a833acafffcb0fd1151
MD5 57d67be536f64823934fd9df4d27eec6
BLAKE2b-256 5cb50cdbb2e50a6c4f1cec12703c768254a9599d4e1af547d20db6bea068592c

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.7.12-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.7.12-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 66dea615da88ef6660eb1e1dfe3762f38e1a1e0809900bfaf250645d2ba253ba
MD5 e4aed650a8144d36abdea7694eb6b1c8
BLAKE2b-256 e48d049d36407c9f3a2f8f75110167b353af83c6d276f1f354111836a2ae900e

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.7.12-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.7.12-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7a3ec56b36a037d038d0d2e7769a8a27c8b6426e3eb529a05fff4f587db6eeca
MD5 44a070d5b964a6c142a323fa06d43168
BLAKE2b-256 945fb6b5d3b8cd6337af1fe2c0ca14c90d1c9c1d4014dc3571e4efa79460db9a

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.7.12-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.7.12-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c1f8a142610eb0d2758b255bec0574ef0fa50f81ab864c0688be93df1ab0c162
MD5 279110ee11e43c0804931067f407195d
BLAKE2b-256 0ba45511b3eb1a30a39ba13dbbb406c6e0d14d7c7cf3d8b6b00580f0401eaa9c

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.7.12-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.7.12-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b68a418515f6ce011b2bf4c780edd814b6bc4e072f22f293a0e8cc350cc3a52c
MD5 32df3498eefcd70819ce73f9d691fede
BLAKE2b-256 0183be72df58d9d78907b42cb8dc60cabdfc2744dfb2c9f976d3e056ca8df4a0

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.7.12-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.7.12-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1b7b2d4b1b69ded907e44c975ab1c36a5806a50ff4e4223b5f80f6ce30824328
MD5 5962b11032c6d3c9f7bcdb78b8375ba5
BLAKE2b-256 36734de479c8746216454f40ba22905edccef32a606d78027445e1dcf5b8cd15

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2025.7.12-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2025.7.12-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bfa583e4e501666249a6064b766631c3556368728163b674070c95eb4bd38e18
MD5 827719626686bcc3ff26ed5b06fba67d
BLAKE2b-256 b270110c907cd2f7458d1fe0c1514dc5810c09dede03fed852b30cd74a125095

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page