Skip to main content

No project description provided

Project description

FBGEMM_GPU

FBGEMM_GPU-CPU CI FBGEMM_GPU-CUDA CI FBGEMM_GPU-ROCm CI

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance PyTorch GPU operator libraries for training and inference. The library provides efficient table batched embedding bag, data layout transformation, and quantization supports.

See the full Documentation for more information on building, installing, and developing with FBGEMM_GPU, as well as the most up-to-date support matrix for this library.

Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

For contributions, please see the CONTRIBUTING file for ways to help out.

License

FBGEMM_GPU is BSD licensed, as found in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

fbgemm_gpu_nightly_cpu-2026.2.20-cp314-cp314-manylinux_2_28_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2026.2.20-cp314-cp314-manylinux_2_28_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ ARM64

fbgemm_gpu_nightly_cpu-2026.2.20-cp313-cp313-manylinux_2_28_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2026.2.20-cp313-cp313-manylinux_2_28_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

fbgemm_gpu_nightly_cpu-2026.2.20-cp312-cp312-manylinux_2_28_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2026.2.20-cp312-cp312-manylinux_2_28_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

fbgemm_gpu_nightly_cpu-2026.2.20-cp311-cp311-manylinux_2_28_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2026.2.20-cp311-cp311-manylinux_2_28_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

fbgemm_gpu_nightly_cpu-2026.2.20-cp310-cp310-manylinux_2_28_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly_cpu-2026.2.20-cp310-cp310-manylinux_2_28_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

File details

Details for the file fbgemm_gpu_nightly_cpu-2026.2.20-cp314-cp314-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2026.2.20-cp314-cp314-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 67d4cd8dae2a7fdf96072d20ddfe222f4899119f849c9bc1ea0b3d0daec2ce31
MD5 07db5462d29ac2d019b97d89b567797a
BLAKE2b-256 87ce8ef66526f45175dfd679e6c9f46c644b53599f7a160cab4618f420e5ec76

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2026.2.20-cp314-cp314-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2026.2.20-cp314-cp314-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 49ce0bab87176cfd8d228939dd4a7776549a67a3590486e661d38e3f629b3276
MD5 eedffe26301f9a1009152de7e472b893
BLAKE2b-256 6cf095fd90b723690ffccfafabade876f349737bb948f6216193a4395a17d721

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2026.2.20-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2026.2.20-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e3da87dfe2081f4a58c46ccff9a34dc1901856f64c056cf55c355fd9e8094a45
MD5 56b0e283f58a9d16d868175072e78a84
BLAKE2b-256 156125df8543886fce7038f670c24fc2831d7eb81a2d5a43a47c499e2d11b021

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2026.2.20-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2026.2.20-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a6388020ca6cc464e9d35cee871f7a76f5d3660a70abb877264db09b1021cf03
MD5 71b7d35623607eb7ec00f0a800710c49
BLAKE2b-256 71fdc7f08dfbd322fa558e3f3325edd0f4db7e70d1d9568ea4c2d396282acaf9

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2026.2.20-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2026.2.20-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 26cf56478497a5436c55d27ebe71eb7f1439ab9858572b693b1a2cdb20715c3a
MD5 e2835256bbf05fc36164acef2cb1ff77
BLAKE2b-256 4183c2a7223d182e65a4b13045d41bebd0a3e283327327ee89364730f1661000

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2026.2.20-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2026.2.20-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8e4019360aca61e69036dfc20e72a9a81b07ab6856365fd2affee6b59100bb54
MD5 dbe7b88a419a3d676c9fecadf5206734
BLAKE2b-256 f7c4aeab97eec8e37cc6d38229bb3216b206b133b916bca77a8ccbc14d54786a

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2026.2.20-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2026.2.20-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0275094851764d34e5b48d53a3d06e1f0c5c41c440b0c6c43cff38d213161bce
MD5 00dc4609207aeade31469b91588a0609
BLAKE2b-256 0dafcc32f1a9739cdd0ed7a9e55168176c77f56b4e965013ff47b14801066c44

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2026.2.20-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2026.2.20-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 09ff772a41b045dda01402b04c46cc6c989ce642c3bec37d2c0f41ea52367099
MD5 2b2c9d851963e0a067ea5b0d74835ff4
BLAKE2b-256 9e243dd8e3c2567ef99323e258cfb3139fc31d0ff5a4b51fab21ff2cc5d3a1eb

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2026.2.20-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2026.2.20-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 93e1f0455235de0ea3498f56e28a3a780d860f0bef3334acd7a3b030c5812b46
MD5 1b7003ab922d5df314d5fd0cae0c883b
BLAKE2b-256 277c18035c24c0f713481d91f9495e86436ed667259bde8846ca6ae962a5c88c

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2026.2.20-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2026.2.20-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4951b16d9053d04b6f82f193a915fd27425fda76a08391a327d5c3b7123fa54e
MD5 df9c34d87c3c9b6bae2145d565c1ff1a
BLAKE2b-256 e32b5a56281e036f9de51d070891d26b2319db58671da392fbc01ed4c145119c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page