Skip to main content

No project description provided

Project description

FBGEMM_GPU

FBGEMM_GPU-CPU CI FBGEMM_GPU-CUDA CI FBGEMM_GPU-ROCm CI

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance PyTorch GPU operator libraries for training and inference. The library provides efficient table batched embedding bag, data layout transformation, and quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch packages (2.1+) that are built against those CUDA versions.

See the full Documentation for more information on building, installing, and developing with FBGEMM_GPU, as well as the most up-to-date support matrix for this library.

Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

For contributions, please see the CONTRIBUTING file for ways to help out.

License

FBGEMM_GPU is BSD licensed, as found in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.14-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.14-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67a2c60620c797beea33311c7df03d48262003163e5ec8da56b0bbae7a2316d6
MD5 c97464280a9ced2f36b83f2b697856bf
BLAKE2b-256 26c35a33cb92901064e3526b6d72d3ca62f7fdf28313cf233cdca9b377181198

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.14-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.14-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 16bb6896aefa047cb145af9b1edfdde9afbd45daf5cdb43db5f84bb971eca6fe
MD5 de2e804f9f6fda6f4dd2dbd63745e295
BLAKE2b-256 dd96e76d1846fb9c193289c5105e032ec73cedda261e4542df4f45883bef2db7

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.14-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.14-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67471cc611e76ea5ee167c555271e4839b9f65918d4a820726d87a7f65aa2654
MD5 c70a5b8a6d9e4adcc2f1d951c2c399e8
BLAKE2b-256 84c6ad2e03cefcd804b69f1e471ff9cd63a9ec4546c835e3fcef133707e66dda

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.14-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.14-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ba16da20ac3419d4a206dfa7994d3906990bda1f0237dae2785b79582fffe24
MD5 bd831eb597d737cfe89f038430c9a71a
BLAKE2b-256 77e1ee79f118f4b0702ac10168f48bc3a12307f9395f07aae26d222532689437

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.14-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.14-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5b80eab6fc5c4e0b4957e7936ab45efac814afae21f39ca051c04f42d148277
MD5 5a86617d1a110dd901bf874e3dcd85a8
BLAKE2b-256 09afc27e8661f0a0c508ed1c41a69833a6d65bfe098800ed255dc849d30bd4d4

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.14-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.14-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 512757800ff74736d95fa7bc385207110d3b4a84e80d7f95368509c15388461f
MD5 f5412450e763aec89386662dec0f0e6d
BLAKE2b-256 e6e63535d33102f5b7e622c1f7900140834f57d450c41414fbfdfafb0136a67d

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.14-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.14-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d91c350c09097e8e68e1a3c54f5ee74eda37f0577330ddac6210e7fa4f4ef06
MD5 fcd45949457bb6bc7a33c2f4fd74b49a
BLAKE2b-256 bd72bc320c7141d2f2f7a145f218e669b6506b2ebb8c5772019323027827de96

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.14-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.14-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c2de57d6f670446b7837f6504720e60e9f3524807f0605f7beaa33a2f1d11150
MD5 9fabb3502890374787ce0cb2975868c4
BLAKE2b-256 e8e08369cd5b4169c7ce48ed203cad46532ff2a8accf7a06baa7fd6fe1f78361

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page