Skip to main content

No project description provided

Project description

FBGEMM_GPU

FBGEMM_GPU-CPU CI FBGEMM_GPU-CUDA CI FBGEMM_GPU-ROCm CI

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance PyTorch GPU operator libraries for training and inference. The library provides efficient table batched embedding bag, data layout transformation, and quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch packages (2.1+) that are built against those CUDA versions.

See the full Documentation for more information on building, installing, and developing with FBGEMM_GPU, as well as the most up-to-date support matrix for this library.

Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

For contributions, please see the CONTRIBUTING file for ways to help out.

License

FBGEMM_GPU is BSD licensed, as found in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.15-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.15-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c357603281c859a591836bac72040ac5312c9b36b72bb533478e07d53e4326fe
MD5 81345488ba71f4fac08513209b2706ab
BLAKE2b-256 487bb77e4cafef6e96931452612ec0228d3ac7d4b8eadb271480f7a04914e405

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.15-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.15-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6f606bb88aca23ad15afb2b916fe6b6fefd7e58b27268a6a4a8ffcd416e7ad6f
MD5 12c3b79ae17cca0cab270a3defb23970
BLAKE2b-256 5b0d9a212f8d64d2929de2905c89a254632f1dfd21db6a223490b7d36ec70d1d

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.15-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.15-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2bf408e2242d340d1c3651cb4503def9a018b8b42541490e83d44c65e865ceeb
MD5 9b501d75ab4f48b97fdaf651ef8cb700
BLAKE2b-256 d20593007782545c9787649c836ab07690b9d5ea3b0c6d0ce833302bfd4f76af

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.15-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.15-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4c8be08c9843fa81912717bc3462b6947f6e36232af0500270a6129b847bb052
MD5 a5410ee5c9a6b406a592897054d1559d
BLAKE2b-256 abd416e2e68a8c6e2a9c506752710874ed9c008af469008b065f74735935bc8d

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.15-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.15-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d269cab8c20589d8083d437cbca131ec278f9e10348b8e4e8004276a86bc1e3
MD5 336ac10f92a78854ffa9de5a5e15a3e0
BLAKE2b-256 b98600ec1ba0b8f2cfeebe3e420031083053055a5385d90735452913c46fe434

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.15-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.15-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 506ef7d45086b22c41be3f93787b7b908c309e060de282a0bd6e2ebaf1a319a9
MD5 27de914dda8f0b3a0c7c45836201bf41
BLAKE2b-256 498362611dffd1724c4009b0204592a8224ce705915e833d4208916d7e40420b

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.15-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.15-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db26b8a990df765ef996d51635128ad1ad97187e6175152dff775b2a01b0b747
MD5 48109f206b923b672a43b0548303a57e
BLAKE2b-256 a7d5a0ecf6606590dbe62f46394763720e2e5a391a7762898703b6ae5510a7d2

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.15-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.15-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6255652f2ad801e832cbb2a49af4d6b3b316f91805793757290c36371ee24e65
MD5 98b4e05a3706c5f2dbbe20af41b2a98b
BLAKE2b-256 dcc904be34dd3f558f680a0a3ada606e7c9eb1e259755c097e2941f5f3e1308b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page