Skip to main content

No project description provided

Project description

FBGEMM_GPU

FBGEMM_GPU-CPU CI FBGEMM_GPU-CUDA CI FBGEMM_GPU-ROCm CI

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance PyTorch GPU operator libraries for training and inference. The library provides efficient table batched embedding bag, data layout transformation, and quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch packages (2.1+) that are built against those CUDA versions.

See the full Documentation for more information on building, installing, and developing with FBGEMM_GPU, as well as the most up-to-date support matrix for this library.

Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

For contributions, please see the CONTRIBUTING file for ways to help out.

License

FBGEMM_GPU is BSD licensed, as found in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.17-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.17-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aaabace7aa4a9549db2f5c6f587ddc93472e52adfffccc5905df41fffd8165da
MD5 be9571f9dafc5565992e49766178a3ed
BLAKE2b-256 b5169df6ad0caea093c91a60bdcd9ad5b8c9320903f7be39b91f8c9c891e097d

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.17-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.17-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 45049dae85b8a85f879b43716f4a0abe81b51c4fcdba0caf66e7bf0b340029ed
MD5 ca3a1995ba457c639cd4b97dad9c2119
BLAKE2b-256 90dc24242d14e264cf6d9638c233c64e0cb0583a4a3ed85b243aeafc767019a4

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.17-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.17-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e4530152631d9ccb4e43a0451afb3097e472feabf0e4625363ad27d95bb270b
MD5 7d56b1ddd38e68b58e699adddedb6616
BLAKE2b-256 dd3eaf37a255559aa0d4c2731495b55049ea5e8c670aed1a710743a77b703583

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.17-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.17-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 748efb12d877731560b1b297a39e516b16781a2f9d50ba34eaed7b76313115f5
MD5 ba4443b724f975059e0a8d1da227d215
BLAKE2b-256 ae99cb074f8356f12d80a68e07ced7d28bdfc66a2b814381c3b3ff1a360d3436

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.17-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.17-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8343417c83466d86f394841fe59965101aff552d71f155287bcc398b6e530f5f
MD5 096deb1b67e5344a82f671f27ae7d9cd
BLAKE2b-256 0418d98ef671c0c7aeabf083922c13bcc25cce3c5d4f0d9206a695b297ebb374

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.17-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.17-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2caf003ff05b4d86b0f361528dc4fe74b8131986493db7421a88bd5388d50567
MD5 65c270afc5ed149b492109959ad92842
BLAKE2b-256 1a35d6311da35e6f3b34bc679a674bce181d6441fa926ed06df2d40bea9d8225

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.17-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.17-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d60ebd122c9ae93e346289b231f2c0a0137123ea1c88e93cc7b91dd2315730c
MD5 f732ddab3e584b00d2e0e0264c43eb53
BLAKE2b-256 01809c3b026ca211a9e64aac345ee5548734c05cbeab67a5b567c7d5ec17dd32

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly_cpu-2024.11.17-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly_cpu-2024.11.17-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 76386b707e272404f60824a14f6a1bfab9496f44e256201c2b1c61a9e4c281ec
MD5 71e49b4eabd817a3dda76cdbc97b1b47
BLAKE2b-256 a4679ef914ee06c055715fb1bb0ca098a06234f0ef6a24a9f080d8b6f4796af5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page