No project description provided
Project description
FBGEMM_GPU
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance PyTorch GPU operator libraries for training and inference. The library provides efficient table batched embedding bag, data layout transformation, and quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch packages (2.1+) that are built against those CUDA versions.
See the full Documentation for more information on building, installing, and developing with FBGEMM_GPU, as well as the most up-to-date support matrix for this library.
Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
- File a ticket in GitHub Issues
- Post a discussion in GitHub Discussions
- Reach out to us on the
#fbgemm
channel in PyTorch Slack
For contributions, please see the CONTRIBUTING
file for
ways to help out.
License
FBGEMM_GPU is BSD licensed, as found in the LICENSE
file.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for fbgemm_gpu_nightly_cpu-2024.11.9-cp312-cp312-manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9359c6920677991858cc9af820f7e88e222589e6ebbc7a589ab06c26efe5cc1e |
|
MD5 | 327dce611463762eb0597131233c6bc7 |
|
BLAKE2b-256 | 5deb4f8c218fa9c487500a255a968f7bb2a48c2e526e52f2be4b3a8395088651 |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.9-cp312-cp312-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ae0738cc585ef40117224185a2f86c09cbdcb587093ca7dbdb08ef64a3bd879b |
|
MD5 | d3ca5f198571eb50bf236ad1f52458fb |
|
BLAKE2b-256 | 880e4f6ecb490d62e6297b6a17b5f87647e5a601cf24f8c8482ea248541d8c9a |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.9-cp311-cp311-manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bc9e24b956cb56b1e5a01a05f4581cc7054c3c51f0c23564cdff5f7708c3e9ef |
|
MD5 | 2e40e0ea9170993cd5f58a0399721d88 |
|
BLAKE2b-256 | 5eda560bc4df20cec5d78d2ed8d86e7ae972c4b10fe1b7b3a2be8b1f47c839dd |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.9-cp311-cp311-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c4d7f0faf8d88123205606dd5d173f3d69cbf36f7098d2f47b2d22d4b4758dce |
|
MD5 | bd21f89dd64ee503bd1c3e6962b6f8ab |
|
BLAKE2b-256 | e6732a922064566f317886989bfcd505327d452839100a6b7c8f96919ff99cf6 |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.9-cp310-cp310-manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 113c354ca0d72ce2f3a83323aaef67d415ff8ca31308100c96dba7d4bf2c9a44 |
|
MD5 | 7ec213c5eed32c6599d4734774e1dfff |
|
BLAKE2b-256 | 235137e619b8b042ae246140a1b7c82c1ff357c527ea1f983e04cd48d3260aa2 |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.9-cp310-cp310-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fe9c275395ce8144d1eb587ade27b37799d7fcb4523e509a46285c74692ce2bf |
|
MD5 | 302e695090e7bd4d3da97a046da400c0 |
|
BLAKE2b-256 | 4fc25333263389cfbe6bcf862a56ac9d0a8e92c17b443c527a017c11fb869083 |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.9-cp39-cp39-manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ebe95c8c3fd181d968804533eb671db364e1c534bcba440991252901980dbe7 |
|
MD5 | 9b57dc302dae8d7a7c0594d6c2ac7295 |
|
BLAKE2b-256 | 3429a936385125026bd1c61aeadb922ceaa571998d3f1cb4239aeb5c5716ac83 |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.9-cp39-cp39-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | be50cd3d30082fb684e9be215f3428b7ff5317e250fc38d710f008b8774f9ad4 |
|
MD5 | cb6b47db1d869c76069d63050d700937 |
|
BLAKE2b-256 | e63f907bb7fadea762b2f605caf643c6a10e7e66c20a79e91a9e60d8adc9170c |