Skip to main content

No project description provided

Project description

FBGEMM_GPU

FBGEMM_GPU-CPU CI FBGEMM_GPU-CUDA CI FBGEMM_GPU-ROCm CI

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance PyTorch GPU operator libraries for training and inference. The library provides efficient table batched embedding bag, data layout transformation, and quantization supports.

See the full Documentation for more information on building, installing, and developing with FBGEMM_GPU, as well as the most up-to-date support matrix for this library.

Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

For contributions, please see the CONTRIBUTING file for ways to help out.

License

FBGEMM_GPU is BSD licensed, as found in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fbgemm_gpu_nightly-2025.7.11-cp313-cp313-manylinux_2_28_x86_64.whl (408.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly-2025.7.11-cp312-cp312-manylinux_2_28_x86_64.whl (408.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly-2025.7.11-cp311-cp311-manylinux_2_28_x86_64.whl (408.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly-2025.7.11-cp310-cp310-manylinux_2_28_x86_64.whl (408.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly-2025.7.11-cp39-cp39-manylinux_2_28_x86_64.whl (408.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

File details

Details for the file fbgemm_gpu_nightly-2025.7.11-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly-2025.7.11-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dceba94b7d9a9e9001fb6dfb8f9925c1c341f62f277fbd61c54f6f1d614dfcab
MD5 d18dc6be8660150eeee28ad0b162d095
BLAKE2b-256 a30282c83465f55b4a7ef7fd9424e7e346f5589f6f5bedf605565898019250da

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly-2025.7.11-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly-2025.7.11-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e5aee16fd7c7452343b7c45bd4fc91d44d6e48bbaf6a03320e4b615000d70cc5
MD5 99054a9fe3901e8f6ae7c9f29b1e115c
BLAKE2b-256 ccbfc4b2777f14b89e3d24b127032d28fd95cd2130a48e5ba6595816f9fa991f

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly-2025.7.11-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly-2025.7.11-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 65e1e4c3d2aac55d300458bb08255a440c613a12783ca12b61be69fe62e1d3b7
MD5 dbc88ff17c4d9a1dbb82a510ad1d74c9
BLAKE2b-256 bf3a2c9529a99e5732c8250d1929152fa4feb865a3b3858baf3ed2d588e50edf

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly-2025.7.11-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly-2025.7.11-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2ca4e9875299dc23436d89d8939359452c252bc692c8da74a0a59da9a7c29b54
MD5 2e48b0fcbffb08bc03294c9a943c9af5
BLAKE2b-256 2f4c155c73db9ee544a7f4025f18edcb3ee74ff90e12930616c49c79e2850656

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly-2025.7.11-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly-2025.7.11-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4eb50ad5ecc2fb9c8a04491fef35eb9905f9bede40a62a2ce10f78bb4ea62912
MD5 6c1b3894417592dd96e9e4a1903dcb19
BLAKE2b-256 292ba57645d2a81c12d9cd9cc92da5c0e84bbac9989acb6ba9e7478025cc08be

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page