Skip to main content

No project description provided

Project description

FBGEMM_GPU

FBGEMM_GPU-CPU CI FBGEMM_GPU-CUDA CI FBGEMM_GPU-ROCm CI

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance PyTorch GPU operator libraries for training and inference. The library provides efficient table batched embedding bag, data layout transformation, and quantization supports.

See the full Documentation for more information on building, installing, and developing with FBGEMM_GPU, as well as the most up-to-date support matrix for this library.

Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

For contributions, please see the CONTRIBUTING file for ways to help out.

License

FBGEMM_GPU is BSD licensed, as found in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

fbgemm_gpu_nightly-2025.12.29-cp313-cp313-manylinux_2_28_x86_64.whl (382.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly-2025.12.29-cp312-cp312-manylinux_2_28_x86_64.whl (385.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly-2025.12.29-cp311-cp311-manylinux_2_28_x86_64.whl (385.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

fbgemm_gpu_nightly-2025.12.29-cp310-cp310-manylinux_2_28_x86_64.whl (385.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

File details

Details for the file fbgemm_gpu_nightly-2025.12.29-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly-2025.12.29-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bb1eacd918addd3a5bbbe90dd063a3fa6a4f4d76b730c92d48f9e2b811def99e
MD5 e3b35169e56e92ba68b9ddecd42e87b2
BLAKE2b-256 96b5c86e61e07a6d3f5314dbca9a5df57185abbe406c107b80646f3af2e2ad6f

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly-2025.12.29-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly-2025.12.29-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 668e8f83358eba2ce69f506b9a064ce4a24f51084ae114d3cdf35cb95fcab5de
MD5 354a7140e00950b29ef96446bc8079cc
BLAKE2b-256 992d6934c651dedcdf86946f88f9385f2547cc43881cc4d3260a8bdf55bd2603

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly-2025.12.29-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly-2025.12.29-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ac24f2f7ae6c2c50b0ef3459172f6dc148bf8ffc3a3dd7dc77f811fb4c834390
MD5 2294dd5ac6d65658fa9b0e2c0f1f0efe
BLAKE2b-256 415f5e5997a5ff3e5c59b48c1dd3e132bad1b86953a89314c6ed7084d638d076

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_nightly-2025.12.29-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_nightly-2025.12.29-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c50f7313db3f9a206e14a92983ef3345c3208a02a36e2c07c9f33592f6c02154
MD5 e923ff8995fcbf3815a6a069dac09aac
BLAKE2b-256 6339ccc92db650f399c3d0669917d13b2de2b3e8e14c86ad6c7154a08f097031

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page