Skip to main content

PostgreSQL registry, and online and offline store for Feast

Project description

Feast PostgreSQL Support

This repo adds PostgreSQL offline and online stores to Feast

Get started

Install feast:

pip install feast

Install feast-postgres:

pip install feast-postgres

Create a feature repository:

feast init feature_repo
cd feature_repo

Online store:

To configure the online store edit feature_store.yaml

project: feature_repo
registry: data/registry.db
provider: local
online_store:
    type: feast_postgres.PostgreSQLOnlineStore # MUST be this value
    host: localhost
    port: 5432                  # Optional, default is 5432
    database: postgres
    db_schema: feature_store    # Optional, default is None
    user: username
    password: password
offline_store:
    ...

When running feast apply, if db_schema is set then that value will be used when creating the schema, else the name of the schema will be the value in user. If the schema already exists then no schema is created, but the user must have privileges to create tables and indexes as well as dropping tables and indexes.

Offline store:

To configure the offline store edit feature_store.yaml

project: feature_repo
registry: data/registry.db
provider: local
online_store:
    ...
offline_store:
    type: feast_postgres.PostgreSQLOfflineStore # MUST be this value
    host: localhost
    port: 5432              # Optional, default it 5432
    database: postgres
    db_schema: my_schema
    user: username
    password: password

The user will need to have privileges to create and drop tables in db_schema since temp tables will be created when querying for historical values.

Registry store:

To configure the registry edit feature_store.yaml

registry:
    registry_store_type: feast_postgres.PostgreSQLRegistryStore
    path: feast_registry    # This will become the table name for the registry
    host: localhost
    port: 5432              # Optional, default is 5432
    database: postgres
    db_schema: my_schema
    user: username
    password: password

If the schema does not exists, the user will need to have privileges to create it. If the schema exists, the user will only need privileges to create the table.

Example

Start by setting the values in feature_store.yaml. Then use copy_from_parquet_to_postgres.py to create a table and populate it with data from the parquet file that comes with Feast.

Then example.py can be used for the feature_store.

# This is an example feature definition file

from google.protobuf.duration_pb2 import Duration

from feast import Entity, Feature, FeatureView, ValueType

from feast_postgres import PostgreSQLSource

# Read data from parquet files. Parquet is convenient for local development mode. For
# production, you can use your favorite DWH, such as BigQuery. See Feast documentation
# for more info.
driver_hourly_stats = PostgreSQLSource(
    query="SELECT * FROM driver_stats",
    event_timestamp_column="event_timestamp",
    created_timestamp_column="created",
)

# Define an entity for the driver. You can think of entity as a primary key used to
# fetch features.
driver = Entity(name="driver_id", value_type=ValueType.INT64, description="driver id",)

# Our parquet files contain sample data that includes a driver_id column, timestamps and
# three feature column. Here we define a Feature View that will allow us to serve this
# data to our model online.
driver_hourly_stats_view = FeatureView(
    name="driver_hourly_stats",
    entities=["driver_id"],
    ttl=Duration(seconds=86400 * 1),
    features=[
        Feature(name="conv_rate", dtype=ValueType.FLOAT),
        Feature(name="acc_rate", dtype=ValueType.FLOAT),
        Feature(name="avg_daily_trips", dtype=ValueType.INT64),
    ],
    online=True,
    batch_source=driver_hourly_stats,
    tags={},
)

Then run:

feast apply
feast materialize-incremental $(date -u +"%Y-%m-%dT%H:%M:%S")

This will create the feature view table and populate if with data from the driver_stats table that we created in Postgres.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

feast-postgres-0.2.5.tar.gz (19.3 kB view details)

Uploaded Source

Built Distribution

feast_postgres-0.2.5-py3-none-any.whl (20.6 kB view details)

Uploaded Python 3

File details

Details for the file feast-postgres-0.2.5.tar.gz.

File metadata

  • Download URL: feast-postgres-0.2.5.tar.gz
  • Upload date:
  • Size: 19.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.11.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for feast-postgres-0.2.5.tar.gz
Algorithm Hash digest
SHA256 d190fde68b3fbf06b3a99915ba1e63116e9c8165909de7374a41b3643a6b8268
MD5 ffd04e7a9692f45ddafdf31a4381be0e
BLAKE2b-256 d9f87ad74f2b64f066d12342c1c845af7e940e9ff108bfabde316125b88fff83

See more details on using hashes here.

File details

Details for the file feast_postgres-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: feast_postgres-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 20.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.11.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for feast_postgres-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 60b0653783b126441a1f3f697a1973d3df3d1ef06709588cdd417ed9bc1baba5
MD5 ffb5a1934609fd60f3f04e9c25b64f7d
BLAKE2b-256 3044fae489f80aff9960381458b870f4711396e8bb04c33f339c56416f0747ea

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page