Skip to main content

TSFresh primitives for featuretools

Project description

TSFresh Primitives

Tests PyPI Version PyPI Downloads


Installation

Install with pip:

python -m pip install "featuretools[tsfresh]"

Calculating Features

In tsfresh, this is how you can calculate a feature.

from tsfresh.feature_extraction.feature_calculators import agg_autocorrelation

data = list(range(10))
param = [{'f_agg': 'mean', 'maxlag': 5}]
agg_autocorrelation(data, param=param)
[('f_agg_"mean"__maxlag_5', 0.1717171717171717)]

With tsfresh primtives in featuretools, this is how you can calculate the same feature.

from featuretools.tsfresh import AggAutocorrelation

data = list(range(10))
AggAutocorrelation(f_agg='mean', maxlag=5)(data)
0.1717171717171717

Combining Primitives

In featuretools, this is how to combine tsfresh primitives with built-in or other installed primitives.

import featuretools as ft
from featuretools.tsfresh import AggAutocorrelation, Mean

entityset = ft.demo.load_mock_customer(return_entityset=True)
agg_primitives = [Mean, AggAutocorrelation(f_agg='mean', maxlag=5)]
feature_matrix, features = ft.dfs(entityset=entityset, target_dataframe_name='sessions', agg_primitives=agg_primitives)

feature_matrix[[
    'MEAN(transactions.amount)',
    'AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)',
]].head()
            MEAN(transactions.amount)  AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1                           76.813125                                           0.044268
2                           74.696000                                          -0.053110
3                           88.600000                                           0.007520
4                           64.557200                                          -0.034542
5                           70.638182                                          -0.100571

Notice that tsfresh primtives are applied across relationships in an entityset generating many features that are otherwise not possible.

feature_matrix[['customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)']].head()
            customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1                                                    0.011102
2                                                   -0.001686
3                                                   -0.010679
4                                                    0.011204
5                                                   -0.010679

Built at Alteryx Innovation Labs

Alteryx Innovation Labs

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featuretools_tsfresh_primitives-1.0.2.tar.gz (20.2 kB view hashes)

Uploaded source

Built Distribution

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page