Skip to main content

No project description provided

Project description

FeatureExpress: Time-aware Feature Engineering Library

PyPI version

Overview

FeatureExpress is a groundbreaking in-memory feature engineering library designed for processing time-based event data. It is a hybrid between a feature engineering library and a feature store, aiming to address the complex challenges of dealing with temporal data in machine learning applications.

Prerelease

:warning: Alpha Release Warning: This library is currently in an alpha stage. As such, it is subject to:

  • Changes: The API is still evolving, so you can expect many breaking changes. If you depend on this library in your project, be prepared to update your code as new versions are released.
  • Performance Issues: There may be inefficiencies or other performance issues that have not yet been resolved.
  • Unstable API: Functionality might be added, changed, or removed without notice. Documentation may be incomplete or out of date.

This version is more like a pre-release, and it's primarily intended for developers who are interested in experimenting with the latest features or contributing to the project.

Why FeatureExpress?

Why Another Feature Engineering Library / Feature Store?

The necessity of this unique library grew from years of struggling with event-driven data, especially in customer interactions and recommendations. Time adds complexity, subtlety, and depth to data analysis and modeling. The challenges include:

  • Time makes everything complex.
  • Model validation becomes harder.
  • Data leaks are subtle and hard to trace.
  • SQL-like operations are prone to errors and hard to write.
  • Existing feature stores move the burden of materialization to data scientists.

Event Data for Superior Features

Event data encapsulates reality with timestamped information, and it's pivotal in creating meaningful features. Unlike other methods that often obscure temporal aspects, FeatureExpress utilizes a dedicated data structure to make the connection between events and features clearer and more explicit.

Overcoming Problems with Current Feature Stores

Current feature stores often rely on explicit materialization and caching, leading to increased complexity for data scientists. FeatureExpress adopts a declarative approach (similar to SQL) with a DSL (Domain Specific Language) to define features, allowing for a more intuitive and error-free process.

In-Memory Processing

Built in Rust and interfaced in Python, FeatureExpress leverages in-memory processing to enable:

  • Fast materialization of features.
  • Parallel computations for efficiency.
  • Flexibility to expand to more permanent storage solutions in the future.

Though the current version is limited to datasets that fit in memory, FeatureExpress's performance and robustness make it a valuable tool for data scientists and engineers working with time-series data.

Installation

You can install FeatureExpress via pip:

pip install fexpress

Features

  1. Event-Driven Design: Utilizes events as core data structures for accurate modeling.
  2. Time-Aware DSL: Introduces a SQL-like DSL for expressive and complex feature declarations.
  3. No Data Leaks: The clear separation between past and future guarantees against inadvertent data leaks.
  4. Flexible Observation Dates: Allows custom definitions of observation dates including intervals, fixed, conditional, and more.
  5. Time-based Joins: Enables complicated joins in time, like aggregations over specific periods.
  6. Optimized Performance: Implements performance tricks like partial aggregates for efficient calculations.
  7. Rich Value Representation: Accommodates various data types for broad applications.
  8. Indices and In-memory Store: Ensures optimized querying and manipulation of time-based data.

Documentation

Full documentation, including tutorials and examples, can be found at https://feature.express.

Contributing

Interested in contributing to FeatureExpress? See our CONTRIBUTING.md for guidelines on how to help!

License

FeatureExpress is under MIT. See LICENSE for more details.

Development

env VIRTUAL_ENV=$(python3 -c 'import sys; print(sys.base_prefix)') maturin develop

or

maturin develop

development (optimized code)

maturin develop --release

building Python wheel

maturin build --release -i python

This should create a wheel in target/wheels

installing Python wheel

pip install target/wheels/fexpress_rs-0.1.0-cp38-cp38-linux_x86_64.whl -U

Note that the file name can be different depending on your system.

Docker stuff

docker build -t rust-python-maturin . docker run -rm -v $(pwd)/artifacts:/app/artifacts rust-python-maturin bash -c "make python_debug_docker && make python_profile_docker"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fexpress-0.0.6.tar.gz (156.2 kB view details)

Uploaded Source

Built Distributions

fexpress-0.0.6-pp39-pypy39_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPyWindows x86-64

fexpress-0.0.6-cp311-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11Windows x86-64

fexpress-0.0.6-cp311-cp311-musllinux_1_1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

fexpress-0.0.6-cp311-cp311-musllinux_1_1_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ ARM64

fexpress-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

fexpress-0.0.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

fexpress-0.0.6-cp311-cp311-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

fexpress-0.0.6-cp311-cp311-macosx_10_7_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11macOS 10.7+ x86-64

fexpress-0.0.6-cp310-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10Windows x86-64

fexpress-0.0.6-cp310-cp310-musllinux_1_1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

fexpress-0.0.6-cp310-cp310-musllinux_1_1_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ ARM64

fexpress-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

fexpress-0.0.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

fexpress-0.0.6-cp310-cp310-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

fexpress-0.0.6-cp310-cp310-macosx_10_7_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10macOS 10.7+ x86-64

fexpress-0.0.6-cp39-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9Windows x86-64

fexpress-0.0.6-cp39-cp39-musllinux_1_1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

fexpress-0.0.6-cp39-cp39-musllinux_1_1_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ ARM64

fexpress-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

fexpress-0.0.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

fexpress-0.0.6-cp39-cp39-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

fexpress-0.0.6-cp39-cp39-macosx_10_7_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9macOS 10.7+ x86-64

fexpress-0.0.6-cp38-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8Windows x86-64

fexpress-0.0.6-cp38-cp38-musllinux_1_1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

fexpress-0.0.6-cp38-cp38-musllinux_1_1_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ ARM64

fexpress-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

fexpress-0.0.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

fexpress-0.0.6-cp38-cp38-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

fexpress-0.0.6-cp38-cp38-macosx_10_7_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8macOS 10.7+ x86-64

File details

Details for the file fexpress-0.0.6.tar.gz.

File metadata

  • Download URL: fexpress-0.0.6.tar.gz
  • Upload date:
  • Size: 156.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for fexpress-0.0.6.tar.gz
Algorithm Hash digest
SHA256 7b8e676247a87822f1efa8c235059ae8f82a4347a65c8db8fa797461c9c59206
MD5 9b3b80e78286c1f61703e92617fe4f5f
BLAKE2b-256 7d8d40ee5754bf6aaf75dd53f6ff71611c7a2aeb770b687f545b4e36111d326c

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e720c1da1046bc74a45dc58e9c6a5fde4a1330ae362016d2c86ff28f6056b7b7
MD5 59c2507a356a47585bdf4df2f2b7549a
BLAKE2b-256 ac631e371fba45c53cd13fb5bcb943d18c5774a5840ed260e862f0fff0f08609

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp311-none-win_amd64.whl.

File metadata

  • Download URL: fexpress-0.0.6-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for fexpress-0.0.6-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 3745e11565c461ae7ef0f290469914c858d0b30f92937f8af3ac461c70e6f807
MD5 6f127406219f9e8130025ba59b31f7cb
BLAKE2b-256 88b365edd5950ed0d3327f03a5c933534ae36c9a9e972c0eda0c4b7e14ee2733

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1f2f58ddc4610ff7cda671066308f63c9360731c9d856a34de4c9d639b72ee8e
MD5 aafd4f9ef297a70154ce51c7399f9ee7
BLAKE2b-256 38636a4835fe722cd25aee318ece9753955b2e855d410629cd79fc808d41248a

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 36b4f891bd28bcf31291c215b1cb79a25a3f024f69ca1e413321c5eac7c66117
MD5 bed4ffc6761322851f7a963e34dc7601
BLAKE2b-256 25d5cc16b13bba5bdeec6338d0ef29e2a6eb17904f9e6ceaf652759f7457cef2

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b03ca34ac712414c3c735dba9a6d0c97e8c66ca631bb4f5043e2e6ebec0041e0
MD5 94b7693e965cb940c4f2510e52d86b9d
BLAKE2b-256 15eaad742e95cd68d202c5ee51efdfa311c0255d348b177be4eb8ccef732730b

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 61b6760cad02ba7bdbb2caff26d8dac9cbe7069779c22dd6202289b054ecc015
MD5 af83db8203e8a393d087d6fd6e2f0f65
BLAKE2b-256 f5e3335c213faebbbcfb221aa1342fb26bf467fa741df911712c98903da83f09

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9a6ce2e4fc42ecaa96669cfd33ac63c01f59c30712e249679809b68a8c25da97
MD5 29c558df1f57eace7c9a434c35f7f345
BLAKE2b-256 2b312c660a2b35dd31d51614f1c07f449ed2fecd5d9649f070eb4606144be733

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d7d143db8567aa798ed62e08b957425658fb79e2919b7d2ebf933dc48d3f57a8
MD5 bea9569aa974795b2a98b3f0003c4953
BLAKE2b-256 8e7600f71e3664bb64ed7c0ea4b0d3e20bcd8df6559d52b9321f5bfd8a90d049

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp310-none-win_amd64.whl.

File metadata

  • Download URL: fexpress-0.0.6-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for fexpress-0.0.6-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 03cefa4dec29d30aa2758e1d045474e06fa3f91ab9a63b75343e3614d4b4d1d1
MD5 2aaa27bb600a03390b8944fc3ff918b2
BLAKE2b-256 758153324e3eec42e545968abf1a5ad9f7b8f5a06ac807db860d98a66650097d

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 87f73efe7badadaf3d9a1c38960091df573c38ce1362eb77d94bfd6640d4618a
MD5 9aa88319c80476ee411039ee3cf51b7b
BLAKE2b-256 b18be251d9842d92b0975d83f6aa34347b7b7aea0a4bc454c5dd94bbb7a41f2b

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7cd744c402fd28670e2d84122b1c7245c1a4d94ab200e425b63e9f9082efd850
MD5 c6c653d2e4a478dfb4ac443684a4ed5a
BLAKE2b-256 e871bf77f352c7af606e0ee8d4400bfce1fc0c10fb88017ce0a973fefc65b580

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 657ac3e77a9557054f172015c068b96961fbe7d92161c34e7d051544ff33440a
MD5 788c7c932e0fb45412ac0d18a1183dc3
BLAKE2b-256 b2937c6f2f95f6a0b2d7728bdb05fc49629a0c8233aabba992356f53d367cc6c

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 571cbced1b69840c78540e43cfc14a754e95c01410fd74c5030fce8994f4cadf
MD5 7979ae70280cedb30e03dd9515c7c173
BLAKE2b-256 b290f6ab05c6f381b5cd8f539343f71b3a5036bb81e543033c08b553c2296bb1

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 08920adbcce746811382555fbb2d882fb6ac5e3e35710e3f340884d9cfe6e844
MD5 8e58fb354807d5b80968c893309703d3
BLAKE2b-256 a8efa7a08450f7e1676b02ad477cb0857443370c4ac4ca41631b388b797820d2

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3ea53dcce43638a3867fc3408c6729ab7f3a108f13eb790d7a8d75d2ec34e02f
MD5 82c65702ca3fe2a87418a7b906afc70c
BLAKE2b-256 aecd34761dad62931f3c51cbddc164fd49e19e6b1f22273acd5049200d4b5d4d

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp39-none-win_amd64.whl.

File metadata

  • Download URL: fexpress-0.0.6-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for fexpress-0.0.6-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 0ac39823196dcadbd79652b454640cfc8e84b635975232fbc8db0590996f980c
MD5 6e7115014012fbf6591ce7bc64d84bbc
BLAKE2b-256 4ebb2088bb5d644550ab401690c932f017905bd493217247af292f2ad556b0ac

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d021bac4dd51f8f462c838e166e3a120a326943bb2829c6518246ca10abd4650
MD5 638e69cacf7b7a38194e9d134646ace6
BLAKE2b-256 74039be20073adc4510166f8b94520c9764676b2a83317724ea62694f5a0cebc

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 147ce3b03a5c2d198e1b5add240902e1ad736df2628fd5b061dd76b85f919e66
MD5 329851244da93da5ff8af01702e0c4e5
BLAKE2b-256 011c7a60ae4c9db5ea9058740c1295380901c5709c6950626ad2ff61ede65722

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3e86d4ef63ed642a4875602d7331da733ceba900b0e428371831ecf1a5a8ad5
MD5 3ec96648302d1d0206375ddd1d913946
BLAKE2b-256 956ccb63f6dbb1f6714334503ece5307e07ce2e07bff487d6a8c773dd21a6b3a

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 76d9b65091fc5e0a0c28c2641eb82bdb8059275855355f792e1c2a9128192952
MD5 fe66b52402add5fa3d86b0b23c92132e
BLAKE2b-256 e771bbde56b106c2c4ca11abcd318e7ace551e99bc46c1112bc22c75d8c19863

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 845c679d918c747f767880ed17de4bbff06702ce4a65a869e400e9dc01f7d87c
MD5 86e9ffee81bec4a9ae19394b83a15c62
BLAKE2b-256 8b3831355adad40a5b1b7ca3c29da0d048e14e887c535497a50d4d9111103fc4

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 22c57e8a5ae5f3b58567e6728cd290cdcb9e947ba4e46be17cc4a53eebe12822
MD5 d6a1ca378f4582e5399450a2c5a89d3b
BLAKE2b-256 efd352bb6c10098aff8897c109739386185aa695ae8c66513c12925775e54d3c

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp38-none-win_amd64.whl.

File metadata

  • Download URL: fexpress-0.0.6-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for fexpress-0.0.6-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 123ab4199429c11b2306219954422f3f77186b240dcc35ad9a0f246cfc5e56e9
MD5 6efad47a19fd2a634a969bf49cddb865
BLAKE2b-256 5e80cfaf41727cc7c5b36283b183f1b131db3c26c907d5c122b1dc5db330a54b

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 99edcef8d6ba3beb036ea515936682e35fa16d6ec14c49ac5ac5942429a3fa77
MD5 5adf52dae0b95c94eeeab0349df665bc
BLAKE2b-256 97e83bb34a5a91270470b6e8692f4e3442408bc67189d107c902dd96cf71eb33

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 12ad9e63667d57cc9a1b9098e34cfa04121ca099ce19ab6ffd199510a1f235d0
MD5 3c6a139513a6bb21a798adf5ad6e9a34
BLAKE2b-256 da81a83d11d2943ce829f73d1e0008b48a8083a918928611253649b056c1d06e

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b88ae97c30275077bf80875423f32de35ac3ab65f2ca0d81b073c02fa38049d
MD5 c627ecb639b8711348a9fd7ba94d007c
BLAKE2b-256 d260df5884a796c68aa44b9804c6a06fa913df9439283db44aef2b84a471ccab

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d3aae2a13cf456274f3f86e0a8eb30bcf2f88dbf413ef79ce0ffa8299f90af1c
MD5 0b4ae42522f5eb5bb10f8571b9c6e0f9
BLAKE2b-256 8110221ae388214f38233880e3ceb6ec9a9c6801e8e66f3b4b3c0693c8c67ca8

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c039487c4b52aab96eae730d5036c5f1c8a94c6c80fc878ccbd20f6a61bd3e11
MD5 606978902c359f182d8fc373c3cdc79c
BLAKE2b-256 f5e215ad54667cf0fb3cf73f5db7e6d12443c2be5293633ffa324a8fe30e9daf

See more details on using hashes here.

File details

Details for the file fexpress-0.0.6-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for fexpress-0.0.6-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f3bbafca641d6ba38cc77827f85212c1814e5cf3ade05bbddf7c5c144780ec52
MD5 1d1699cb0ad8f4676e42b191b31f703d
BLAKE2b-256 c4ebd012f858fa7e35304cb11a24b0e8bb6f985b3412224467463adc988aedca

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page