Skip to main content

FHIR to pandas.dataframe for AI and ML

Project description

:fire: fhiry - FHIR to pandas dataframe for data analytics, AI and ML

Virtual flattened view of FHIR Bundle / ndjson / FHIR server / BigQuery! SourceRank PyPI download total GitHub tag (latest by date)

:fire: FHIRy is a python package to facilitate health data analytics and machine learning by converting a folder of FHIR bundles/ndjson from bulk data export into a pandas data frame for analysis. You can import the dataframe into ML packages such as Tensorflow and PyTorch. FHIRy also supports FHIR server search and FHIR tables on BigQuery.

Test this with the synthea sample or the downloaded ndjson from the SMART Bulk data server. Use the 'Discussions' tab above for feature requests.

:sparkles: Checkout this template for Multimodal machine learning in healthcare!

:fire: Checkout MedPrompt for Medical LLM prompts, including FHIR related prompts, such as text-to-FHIRQuery mapper!



pip install fhiry

Latest dev version

pip install git+


1. Import FHIR bundles (JSON) from folder to pandas dataframe

import fhiry.parallel as fp
df = fp.process('/path/to/fhir/resources')

Example source data set: Synthea

Jupyter notebook example: notebooks/synthea.ipynb

2. Import NDJSON from folder to pandas dataframe

import fhiry.parallel as fp
df = fp.ndjson('/path/to/fhir/ndjson/files')

Example source data set: SMART Bulk Data Server Export

Jupyter notebook example: notebooks/ndjson.ipynb

3. Import FHIR Search results to pandas dataframe

Fetch and import resources from FHIR Search API results to pandas dataframe.


Example: Import all conditions with a certain code from FHIR Server

Fetch and import all condition resources with Snomed (Codesystem Code 39065001 in the FHIR element Condition.code (resource type specific FHIR search parameter code) to a pandas dataframe:

from fhiry.fhirsearch import Fhirsearch

fs = Fhirsearch(fhir_base_url = "http://fhir-server:8080/fhir")

my_fhir_search_parameters = {
    "code": "|39065001",

df = = "Condition", search_parameters = my_fhir_search_parameters)


4. Import Google BigQuery FHIR dataset

from fhiry.bqsearch import BQsearch
bqs = BQsearch()

df ="SELECT * FROM `bigquery-public-data.fhir_synthea.patient` LIMIT 20") # can be a path to .sql file


Pass a config json to any of the constructors:

  • config_json can be a path to a json file.
df = fp.process('/path/to/fhir/resources', config_json='{ "REMOVE": ["resource.text.div"], "RENAME": { "": "id" }  }')

fs = Fhirsearch(fhir_base_url = "http://fhir-server:8080/fhir", config_json = '{ "REMOVE": ["resource.text.div"], "RENAME": { "": "id" }  }')

bqs = BQsearch('{ "REMOVE": ["resource.text.div"], "RENAME": { "": "id" }  }')


  • see df.columns


Give us a star ⭐️

If you find this project useful, give us a star. It helps others discover the project.


Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

fhiry-3.2.2-py2.py3-none-any.whl (10.3 kB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page