Pydantic based API support for Flask
Project description
Flask Pydantic API
A wrapper for flask methods allowing them to use Pydantic argment and response types.
Features
- Use pydantic models for request data validation (post bodies and query strings) as well as for formatting responses
- Type annotation driven on the view function instead of the decorator.
- OpenAPI schema generation and documentation
- Smart response fields and expansions using pydantic-enhanced-serializer.
- Fold path parameters into input Pydantic models
- File Uploads into Pydantic model fields
- Async views
Installation
$ pip install flask-pydantic-api
With support for pydantic-enhanced-serializer:
$ pip install flask-pydantic-api[serializer]
Basic Usage
from flask import Flask
from flask_pydantic_api import pydantic_api
from pydantic import BaseModel
app = Flask("my_app")
class RequestBody(BaseModel):
field1: str
field2: Optional[int]
class ResponseBody(BaseModel):
response_field1: str
# GET with query string field1=...&field2=..., responding with json RequestBody
@app.get("/api/something")
@pydantic_api(
name="Go get something", # Name of path operation in OpenAPI schema
tags=["MyTag"], # OpenAPI tags
)
def do_work(body: RequestBody) -> ResponseBody:
return ResponseBody(....)
# POST with body
@app.post("/api/something_else")
@pydantic_api(
name="Go do something", # Name of path operation in OpenAPI schema
tags=["MyTag"], # OpenAPI tags
)
def do_work_post(body: RequestBody) -> ResponseBody:
return ResponseBody(....)
OpenAPI
This library will generate the openapi.json schema to go with your usage of @pydantic_api
. An example
view is provided to serve it using RapiDoc, but you can use any other openapi
viewer you wish.
from flask_pydantic_api import apidocs_views
app = Flask("my_app")
# GET /apidocs will render the rapidoc viewer
# GET /apidocs/openapi.json will render the OpenAPI schema
app.register_blueprint(apidocs_views.blueprint, url_prefix="/apidocs")
Note that you may wish to customize your schema results more than this module provides. In that case:
from flask_pydantic_api.openapi import get_openapi_schema
@app.get("/path/openapi.json")
def get_openapi_schema() -> str:
# param Info: from openapi_schema_pydantic
# returns: openapi_schema_pydantic.OpenAPI
my_schema = get_openapi_schema(info)
# customize my_schema as wanted...
return make_response(
(
my_schema.json(by_alias=True, exclude_none=True, indent=2),
{"content-type": "application/json"},
)
)
Configuration and Parameters
@pydantic_api
accepts the following parameters:
name
: str - Name for this operation that will be used in the OpenAPI schemaTags
: List[str] - Tags that will be used for this operation in the OpenAPI schemasuccess_status_code
: int = 200 - HTTP Status code that will be used on successful responsemerge_path_parameters
: bool = False - See Path Parameter Foldingrequest_fields_name
: str = "fields" - If usingpydantic-enhanced-serialzer
this is the name of the request parameter that controls the fieldsets returned. See Using the Enhanced Serializer.maximum_expansion_depth
: int = 5 - If usingpydantic-enhanced-serialzer
this controls how deep expansions can go. See Using the Enhanced Serializer.openapi_schema_extra
: Optional[Dict[str, Any]] - Optional extra data to add to the openapi schema. Will be merged with automatically generated schema data atpaths.<path>.<method>
.
Flask configuration:
FLASK_PYDANTIC_API_RENDER_ERRORS
: bool = True. If true, pydantic validation errors will be rendered to json and returned as a normal response. If false, pydantic errors will yield a standard ValidationError exception.FLASK_PYDANTIC_API_ERROR_STATUS_CODE
: int = 400. IfFLASK_PYDANTIC_API_RENDER_ERRORS
is true, this is the HTTP status code that will be returned.
Path Parameter Folding
For paths that include parameters, you can request that the path parameters be moved into the pydantic object for the request body. In this case you will no longer need the parameter as an argument to your view function.
- Use the
merge_path_parameters
argument to@pydantic_api
to control this. - For this to work, a field of the same name must exist in the request body model
# Normally...
class RequestBodyNormal(BaseModel):
field1: str
@app.post("/path/<path_param1>/whatever")
@pydantic_api()
def do_work(path_param1: str, body: RequestBody) -> Response:
path_param1 = "whatever was in path"
...
# With merging:
class RequestBodyNormal(BaseModel):
path_param1: str # path_param1 is now here INSTEAD of the do_work signature
field1: str
@app.post("/path/<path_param1>/whatever")
@pydantic_api(merge_path_parameters=True)
def do_work(body: RequestBody) -> Response:
body.path_param1 # use this instead of the function arg
...
Response Object Flexibility
When returning from an api view, you will typically instantiate a populated response model and return that.
You can also return a dict, which will be cast into the response model.
You can also return any other object that Flask can handle.
class MyResponseModel(BaseModel):
field1: str
field2: int
# returning a model instance
@app.get("/")
@pydantic_api()
def do_work() -> MyResponseModel:
...
model = MyResponseModel(field1="foo", field2=1234)
return model
# Returning a dict that is expected to be compliant with MyResponseModel:
# To make mypy happy, you need to indicate a dict return, but for the
# OpenAPI schema to work, you also need to specify the model. Make
# both happy with a Union return type.
#
# NOTE: if the dict fails validation with MyResponseModel, the result
# will be a 500 server error
@app.get("/")
@pydantic_api()
def do_work() -> Union[dict, MyResponseModel]:
...
return {
"field1": "foo",
"field2": 1234,
}
# Return something that isn't a dict or a model.
# What you get here depends on how Flask supports what you are returning.
# If it isn't a dict or a model, @pydantic_api will just pass it through.
@app.get("/")
@pydantic_api()
def do_work() -> SomthingElse:
...
return SomethingElse()
Error Handling
By default, errors on pydantic validations of inputs will return a 400 HTTP status
code with a json response body that encodes the pydantic errors in its native format
(loc, msg, etc).
You can return a status code other than 400 by setting the flask config
FLASK_PYDANTIC_API_ERROR_STATUS_CODE
.
If you want to handle the error differently (for example to customize the data structure
of the errors), you can turn off the automatic error handling by settings the
flask config FLASK_PYDANTIC_API_RENDER_ERRORS
to False
.
When error handling is turned off, pydantic validation errors will throw the
pydantic.ValidationError
exception. You will need to handle that exception
or else the server response will be a 500 server error. See Flask Registering
Error Handlers.
Response Validation Errors:
If pydantic validation fails on your response object, the error will never be serialized and returned in the response. This is because the client user cannot easily distinguish between the error happening on input or on your response. Response validation errors will throw an exception and yield a 500 server error.
Using the Enhanced Serializer
This module supports pydantic-enhanced-serializer. It will use it automatically if installed.
The argument parameter used to select fields and expansions is
fields
. This can be customized with the request_fields_name
parameter of @pydantic_api
. You do not need to specify the fields
parameter in your function arguments or request body model.
The fields
parameter may be in the query string or in the post body. It can
be a list of strings or a string of field names separated by commas.
The maxium expansion depth defaults to 5 and can be controlled with
the maximum_expansion_depth
parameter of @pydantic_api
Example:
class MyResponse(BaseModel):
field1: str
field2: str
class Config:
fieldsets = [
default: ["field2"],
]
@app.get("/something")
@pydantic_api()
def get_something() -> MyResponse:
return MyResponse(field1="value1", field2="value2")
curl http://localhost:8080/something?fields=field1,field2
curl http://localhost:8080/something?fields=field1&fields=field2
curl -X POST \
-H'Content-Type: application/json' \
-d '{"fields": ["field1", "field2"]} \
http://localhost:8080/something
See Pydantic Enhanced Serializer for more information.
File Uploads
File uploading with multipart/form-data
content into pydantic request models is supported and
the usual required and type checks will be done.
Multiple files can be uploaded in the same request so long as each has a distinct field name.
from pydantic import BaseModel
from pydantic_api import UploadedFile, pydantic_api
class MyRequest(BaseModel):
photo: UploadedFile
caption: str
@app.post("/upload-photo"
@pyantic_api()
def upload_photo(body: MyRequest) -> MyResponse:
binary_file_data = body.photo.read() # body.photo is werkzeug.datastructures.FileStorage object
file_name = body.photo.filename
...
curl -F photo=@some_file.jpg -F caption="A great picture!" http://localhsot:8080/upload-photo
License
This project is licensed under the terms of the MIT license.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Hashes for flask_pydantic_api-0.9.5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | be4994eb1112811526c3983ab0f29df722d5d19cb5dfadac106b380495beaf94 |
|
MD5 | b39ef603a5def2f382c5637c73858251 |
|
BLAKE2b-256 | 6406e0d8f31a450777aa9aa75efb60309a547d160e597d30779adaee5e08d2b4 |