Skip to main content

MemVerge Flyte plugin

Project description

Flytekit Memory Machine Cloud Plugin

Flyte Connector plugin to allow executing Flyte tasks using MemVerge Memory Machine Cloud.

To install the plugin, run the following command:

pip install flytekitplugins-mmcloud

To get started with MMCloud, refer to the MMCloud User Guide.

Getting Started

This plugin allows executing PythonFunctionTask using MMCloud without changing any function code.

Resource (cpu and mem) requests and limits, container images, and environment variable specifications are supported.

ImageSpec may be used to define images to run tasks.

Credentials

The following secrets are required to be defined for the connector server:

  • mmc_address: MMCloud OpCenter address
  • mmc_username: MMCloud OpCenter username
  • mmc_password: MMCloud OpCenter password

Defaults

Compute resources:

  • If only requests are specified, there are no limits.
  • If only limits are specified, the requests are equal to the limits.
  • If neither resource requests nor limits are specified, the default requests used for job submission are cpu="1" and mem="1Gi", and there are no limits.

Example

example.py workflow example:

import pandas as pd
from flytekit import ImageSpec, Resources, task, workflow
from sklearn.datasets import load_wine
from sklearn.linear_model import LogisticRegression

from flytekitplugins.mmcloud import MMCloudConfig

image_spec = ImageSpec(packages=["scikit-learn"], registry="docker.io/memverge")


@task
def get_data() -> pd.DataFrame:
    """Get the wine dataset."""
    return load_wine(as_frame=True).frame


@task(task_config=MMCloudConfig(), container_image=image_spec)  # Task will be submitted as MMCloud job
def process_data(data: pd.DataFrame) -> pd.DataFrame:
    """Simplify the task from a 3-class to a binary classification problem."""
    return data.assign(target=lambda x: x["target"].where(x["target"] == 0, 1))


@task(
    task_config=MMCloudConfig(submit_extra="--migratePolicy [enable=true]"),
    requests=Resources(cpu="1", mem="1Gi"),
    limits=Resources(cpu="2", mem="4Gi"),
    container_image=image_spec,
    environment={"KEY": "value"},
)
def train_model(data: pd.DataFrame, hyperparameters: dict) -> LogisticRegression:
    """Train a model on the wine dataset."""
    features = data.drop("target", axis="columns")
    target = data["target"]
    return LogisticRegression(max_iter=3000, **hyperparameters).fit(features, target)


@workflow
def training_workflow(hyperparameters: dict) -> LogisticRegression:
    """Put all of the steps together into a single workflow."""
    data = get_data()
    processed_data = process_data(data=data)
    return train_model(
        data=processed_data,
        hyperparameters=hyperparameters,
    )

Connector Image

Install flytekitplugins-mmcloud in the connector image.

A float binary (obtainable via the OpCenter) is required. Copy it to the connector image PATH.

Sample Dockerfile for building an connector image:

FROM python:3.11-slim-bookworm

WORKDIR /root
ENV PYTHONPATH /root

# flytekit will autoload the connector if package is installed.
RUN pip install flytekitplugins-mmcloud
COPY float /usr/local/bin/float

CMD pyflyte serve connector --port 8000

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flytekitplugins_mmcloud-1.16.13.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

flytekitplugins_mmcloud-1.16.13-py3-none-any.whl (8.9 kB view details)

Uploaded Python 3

File details

Details for the file flytekitplugins_mmcloud-1.16.13.tar.gz.

File metadata

File hashes

Hashes for flytekitplugins_mmcloud-1.16.13.tar.gz
Algorithm Hash digest
SHA256 0ab40b0fb521373f4aba0333e2663e4a6e1673b811157a9bd13afe7b243127d3
MD5 1c8e53dae84a9f254d6d290f53e210ec
BLAKE2b-256 ec87e4ca844bd8063cf06d50f5411c25cc251fa769ed32a7b15f6bf47fccf124

See more details on using hashes here.

File details

Details for the file flytekitplugins_mmcloud-1.16.13-py3-none-any.whl.

File metadata

File hashes

Hashes for flytekitplugins_mmcloud-1.16.13-py3-none-any.whl
Algorithm Hash digest
SHA256 bdbd1447bb62097448e04b8deb0db8d52637cb5018d858fccc582c05ff90d4ee
MD5 536756d971a4d7684314b0e2a128e923
BLAKE2b-256 0c3b070b9a36b9f5836914b6bd63b35e0462712ab57bb6d4d1d4f723c82a0408

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page