Skip to main content

Pydantic-based HTTP forms

Project description

Fodantic

Pydantic-based HTTP forms.

Pydantic is the most widely used data validation library for Python, but it's hard to use it with regular HTTP forms... until now.

Fodantic allow you to quickly wrap your Pydantic models and use them as forms: with support for multiple values, checkboxes, error handling, and integration with your favorite ORM.

A simple example

from fodantic import formable
from pydantic import BaseModel

@formable
class UserModel(BaseModel):
    name: str
    friends: list[int]
    active: bool = True

# This is just an example. Here you would use the
# request POST data of your web framework instead.
# For example, for Flask: `request_data = request.form`
from multidict import MultiDict
request_data = MultiDict([
  ("name", "John Doe"),
  ("friends", "2"),
  ("friends", "3"),
])

# The magic
form = UserModel.as_form(request_data, object=None)

print(form)
#> UserModel.as_form(name='John Doe', friends=[2, 3], active=False)
print(form.fields["name"].value)
#> John Doe
print(form.fields["name"].error)
#> None
print(form.save())  # Can also update the `object` passed as an argument
#> {'name': 'John Doe', 'friends': [2, 3], 'active': False}

Installation

pip install fodantic

Requirements

  • Python > 3.10
  • Pydantic 2.*

Form Fields Parsing with Nested Notation

Fodantic supports parsing nested form fields using bracket ([]) notation -- similar to how Ruby on Rails and PHP handle form data. This allows you to easily create complex nested data structures from flat form submissions.

Nested Object Notation

You can use brackets to define nested objects in your form fields:

<input name="user[name]" value="Alice">
<input name="user[email]" value="alice@example.com">
<input name="user[address][city]" value="New York">
<input name="user[address][zip]" value="10001">

This will be parsed into a nested structure:

{
    "user": {
        "name": "Alice",
        "email": "alice@example.com",
        "address": {
            "city": "New York",
            "zip": "10001"
        }
    }
}

Array Notation

You can create arrays using numeric indexes or empty brackets:

Indexed Arrays

<input name="contacts[0][name]" value="John">
<input name="contacts[0][phone]" value="555-1234">
<input name="contacts[1][name]" value="Jane">
<input name="contacts[1][phone]" value="555-5678">

This will be parsed into:

{
  "contacts": [
    {"name": "John", "phone": "555-1234"},
    {"name": "Jane", "phone": "555-5678"},
  ]
}

Array Append (Empty Brackets)

<input name="tags[]" value="important">
<input name="tags[]" value="urgent">
<input name="tags[]" value="follow-up">

This will be parsed into:

{
  "tags": ["important", "urgent", "follow-up"]
}

Mixed Structures

You can combine these notations to create complex data structures:

<input name="user[name]" value="Bob">
<input name="user[skills][]" value="Python">
<input name="user[skills][]" value="JavaScript">
<input name="user[projects][0][name]" value="Project A">
<input name="user[projects][0][status]" value="active">
<input name="user[projects][1][name]" value="Project B">
<input name="user[projects][1][status]" value="pending">

This will be parsed into:

{
    "user": {
        "name": "Bob",
        "skills": ["Python", "JavaScript"],
        "projects": [
            {"name": "Project A", "status": "active"},
            {"name": "Project B", "status": "pending"}
        ]
    }
}

Usage with Pydantic Models

This nested notation works seamlessly with Pydantic models, allowing you to map complex form structures to nested models:

from fodantic import formable
from pydantic import BaseModel
from typing import List

class Address(BaseModel):
    city: str
    zip: str

class Project(BaseModel):
    name: str
    status: str

@formable
class UserModel(BaseModel):
    name: str
    skills: List[str] = []
    address: Address
    projects: List[Project] = []

# Your form data with nested structure
form = UserModel.as_form(request_data)

The parser handles all the complexity of transforming the flat form structure into the nested objects your models expect.

Booleans fields

Boolean fields are treated special because of how browsers handle checkboxes:

  • If not checked: the browser doesn't send the field at all, so the missing field will be interpreted as False.
  • If checked: It sends the "value" attribute, but this is optional, so it could send an empty string instead. So any value other than None will be interpreted as True.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fodantic-0.1.tar.gz (14.0 kB view details)

Uploaded Source

Built Distribution

fodantic-0.1-py3-none-any.whl (9.4 kB view details)

Uploaded Python 3

File details

Details for the file fodantic-0.1.tar.gz.

File metadata

  • Download URL: fodantic-0.1.tar.gz
  • Upload date:
  • Size: 14.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.7.9

File hashes

Hashes for fodantic-0.1.tar.gz
Algorithm Hash digest
SHA256 e1e22d5bf4ca208e370623cb4f24f712c66d1e80b088a1b91d6b95f792f1515f
MD5 1f960c48987dd8ad66d018de164a5207
BLAKE2b-256 83b6d1173ae51ab076cea8566c2151038ba109d89ec595f3dbcb59cefd0ef428

See more details on using hashes here.

File details

Details for the file fodantic-0.1-py3-none-any.whl.

File metadata

  • Download URL: fodantic-0.1-py3-none-any.whl
  • Upload date:
  • Size: 9.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.7.9

File hashes

Hashes for fodantic-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 01da47dce34434625958034aaccf7f84c00919e42143dcd183c4f21431d7e1b9
MD5 8094322ede257452bbd902fc2b472bbb
BLAKE2b-256 5dce28b53bbbb5bb06f1c59162f19364f34c3a1d1da1c61c4340853a2a10dd96

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page