Skip to main content

package to simplify few-shot object detection

Project description

fsdetection

fsdetection is a Python package for few-shot object detection, inspired by the simplicity and flexibility of Hugging Face libraries. With fsdetection, you can quickly experiment with few-shot learning for object detection tasks, easily integrate it with popular frameworks, and customize detection models with minimal data.

Features

  • Few-Shot Object Detection: Fine-tune object detection models with only a few examples per class.
  • Cross-Domain Adaptation: Effortlessly adapt models to new domains.
  • Modular Design: Build and customize models with a clean, intuitive API.
  • Pre-trained Models: Access a range of pre-trained models as a starting point for your tasks.

Installation

Install fsdetection directly from PyPI:

pip install fsdetection

LoRA script implementation

https://github.com/Baijiong-Lin/LoRA-Torch

def replace_lora(model, module_name, rank):
    for sub_module_name in model._modules:
        cuurent_module_name = sub_module_name if module_name == "" else module_name + "." + sub_module_name

        if len(model._modules[sub_module_name]._modules) > 1:
            replace_lora(model._modules[sub_module_name], cuurent_module_name, rank=rank)
        else:
            if isinstance(model._modules[sub_module_name], nn.Conv2d):
                model._modules[sub_module_name] = LoraConv2d(
                    in_channels=model._modules[sub_module_name].in_channels,
                    out_channels=model._modules[sub_module_name].out_channels,
                    kernel_size=model._modules[sub_module_name].kernel_size[0],
                    stride=model._modules[sub_module_name].stride,
                    padding=model._modules[sub_module_name].padding,
                    padding_mode=model._modules[sub_module_name].padding_mode,
                    dilation=model._modules[sub_module_name].dilation,
                    groups=model._modules[sub_module_name].groups,
                    bias=model._modules[sub_module_name].bias is not None,
                    norm=model._modules[sub_module_name].norm,
                    r=rank
                ).to('cuda')
            elif isinstance(model._modules[sub_module_name], nn.MultiheadAttention):
                model._modules[sub_module_name] = lora.MultiheadAttention(
                    model._modules[sub_module_name].embed_dim,
                    model._modules[sub_module_name].num_heads,
                    dropout=model._modules[sub_module_name].dropout,
                    r=rank
                ).to('cuda')
            elif isinstance(model._modules[sub_module_name], nn.Linear):
                model._modules[sub_module_name] = lora.Linear(
                    model._modules[sub_module_name].in_features,
                    model._modules[sub_module_name].out_features,
                    bias=model._modules[sub_module_name].bias is not None,
                    r=rank
                ).to('cuda')
            else:
                if len(model._modules[sub_module_name]._modules) > 0:
                    replace_lora(model._modules[sub_module_name], cuurent_module_name, rank=rank)


class LoraTrainer(FineTuningTrainer):
    def __init__(self, cfg):
        super().__init__(cfg)

    @classmethod
    def build_model(cls, cfg, is_finetuned=False):
        model = super().build_model(cfg, is_finetuned)
        replace_lora(model, "", rank=cfg.FINETUNE.LORA.RANK)
        return model

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fsdetection-0.0.5.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

fsdetection-0.0.5-py3-none-any.whl (15.1 kB view details)

Uploaded Python 3

File details

Details for the file fsdetection-0.0.5.tar.gz.

File metadata

  • Download URL: fsdetection-0.0.5.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.4

File hashes

Hashes for fsdetection-0.0.5.tar.gz
Algorithm Hash digest
SHA256 f9b0afdfd05bca7321e25dd21ae576e101b31686bf0ea7b0f1dac91fc17e91b9
MD5 f25c2329ed28a5f1c45e63227797e648
BLAKE2b-256 e2d45a21acfc26e2df5c709a08e8242dccfdb7efa6631dbfcc052f01e6693bcd

See more details on using hashes here.

File details

Details for the file fsdetection-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: fsdetection-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 15.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.4

File hashes

Hashes for fsdetection-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 18bdeb68fc95c750ed42c834d9598ad51cd9b332176501aa2a4b049c2513b755
MD5 f3f35c894766ed28572240d9ffedae9c
BLAKE2b-256 f166be0b2c2bc328f7f2cf49965aa775a998b34f288c54074178876aec4924ea

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page