Skip to main content

('Fundamentus: API to load data from Fundamentus website: https://www.fundamentus.com.br/',)

Project description

Python Fundamentus

version   pyversions license   Actions   Coverage  Dependabot

Python API to load data from Fundamentus website.

API usage

Main functions are named after each website functionality:

A specific list function is built from the following setor parameter:

Examples

get_resultado

Return: -> DataFrame

>>> import fundamentus
>>> df = fundamentus.get_resultado()
>>> print(df.columns)

  Index(['cotacao', 'pl', 'pvp', 'psr', 'dy', 'pa', 'pcg', 'pebit', 'pacl',
         'evebit', 'evebitda', 'mrgebit', 'mrgliq', 'roic', 'roe', 'liqc',
         'liq2m', 'patrliq', 'divbpatr', 'c5y'],
        dtype='object', name='Multiples')

>>> print( df[ df.pl > 0] )

    papel   cotacao     pl   pvp  ...  divbpatr     c5y
    ABCB4     15.81   9.66  0.83  ...      0.00 -0.5287
    ABEV3     15.95  28.87  3.22  ...      0.09  0.0455
    AEDU11    37.35  20.13  1.13  ...      0.30  0.2090
    ...         ...    ...   ...  ...       ...     ...
    WIZS3      7.95   5.96  3.61  ...      0.00  0.1737
    WSON33    45.45  34.29  1.34  ...      1.11  0.0131
    YDUQ3     33.26  39.71  3.10  ...      1.45  0.0449

Columns names were simplified from the original web page to allow DataFrame filtering in a simplified way:

# filter on DataFrame
df = df[ df.pl  > 0   ]
df = df[ df.pl  < 100 ]
df = df[ df.pvp > 0   ]

get_resultado_raw

Return: -> DataFrame

>>> import fundamentus
>>> df = fundamentus.get_resultado_raw()
>>> print(df.columns)

Index(['Cotação', 'P/L', 'P/VP', 'PSR', 'Div.Yield', 'P/Ativo', 'P/Cap.Giro',
       'P/EBIT', 'P/Ativ Circ.Liq', 'EV/EBIT', 'EV/EBITDA', 'Mrg Ebit',
       'Mrg. Líq.', 'Liq. Corr.', 'ROIC', 'ROE', 'Liq.2meses', 'Patrim. Líq',
       'Dív.Brut/ Patrim.', 'Cresc. Rec.5a'],
      dtype='object', name='Multiples')

>>> print( df[ df['P/L'] > 0] )

    papel   Cotação    P/L  P/VP  ...  Dív.Brut/ Patrim.  Cresc. Rec.5a
    ABCB4     15.81   9.66  0.83  ...               0.00        -0.5287
    ABEV3     15.95  28.87  3.22  ...               0.09         0.0455
    AEDU11    37.35  20.13  1.13  ...               0.30         0.2090
    ...         ...    ...   ...  ...                ...            ...
    WIZS3      7.95   5.96  3.61  ...               0.00         0.1737
    WSON33    45.45  34.29  1.34  ...               1.11         0.0131
    YDUQ3     33.26  39.71  3.10  ...               1.45         0.0449

In the _raw function, columns names are preserved as captured from the web page. Be aware that names are in pt-br and contain spaces and accents. Filtering must be made explicitly:

# filter on DataFrame
df = df[ df['P/L'] > 0   ]
df = df[ df['P/L'] < 100 ]
df = df[ df['P/VP'] > 0  ]

The renaming list can be found here.

get_papel

Return: -> DataFrame

>>> import fundamentus

>>> df = fundamentus.get_papel('WEGE3')  ## or...
>>> df = fundamentus.get_papel(['ITSA4','WEGE3'])

>>> print(df)

        Tipo       Empresa        Setor ... Receita_Liquida_3m    EBIT_3m Lucro_Liquido_3m
ITSA4  PN N1  ITAÚSA PN N1  Financeiros ...         1778000000  257000000       1784000000
WEGE3  ON N1  WEG SA ON N1  Máquinas e  ...         4801260000  946670000        644246000

list_papel_setor

Return: -> list

>>> import fundamentus

>>> fin = fundamentus.list_papel_setor(35)  # finance
>>> seg = fundamentus.list_papel_setor(38)  # seguradoras

>>> print(fin)
   ['ABCB4', 'BBAS3', 'BBDC3', 'BBDC4', ... ]

>>> print(seg)
   ['BBSE3', 'IRBR3', 'SULA4', 'WIZS3', ... ]

The full list of companies by setor can be found here

License

The MIT License (MIT)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fundamentus-0.3.2.tar.gz (15.7 kB view details)

Uploaded Source

Built Distribution

fundamentus-0.3.2-py3-none-any.whl (13.3 kB view details)

Uploaded Python 3

File details

Details for the file fundamentus-0.3.2.tar.gz.

File metadata

  • Download URL: fundamentus-0.3.2.tar.gz
  • Upload date:
  • Size: 15.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for fundamentus-0.3.2.tar.gz
Algorithm Hash digest
SHA256 9605878883c55daf1ecda529f130d94584514564be79f3e03831430751e7b130
MD5 525b9dbb60c5598bbae1ed0bb3366a08
BLAKE2b-256 152729b981cda83339e907a009eea190aae57b3736fb09a45960af589fe574d2

See more details on using hashes here.

File details

Details for the file fundamentus-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: fundamentus-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 13.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for fundamentus-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5368d174141f6ffcd60adb1fe12d7cbc7aeb9593af92025ad405a89b153d6301
MD5 650e5e744625a73bb63589cc286d4e1e
BLAKE2b-256 d75f79a6656d5641062767346d7a26700691db01ec2fd90ebc6ab5c3a24e1eb1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page