Create automated bots that trade for you while you sleep
Project description
Installation
$ pip install futon
Usage
Step 1: Initialize a data provider
A data provider refers to a source from where an instruments historical data can be fetched. Currently, Binance is the only supported provider (more are being added actively)
from futon.data.providers import Binance
# Add your developer API keys here
api_key = '<API KEY>'
secret_key = '<API SECRET>'
binance = Binance(api_key, secret_key)
Step 2: Choose an instrument
coin = futon.instruments.Crypto(base_asset = 'DOGE',
quote_asset = 'USDT',
provider = binance,
interval = '30-min',
start_date = '2021-05-01 00:00:00')
When you initialize an instrument, historical data for the instrument is downloaded by default
If you're a chart guy, then you can create an interactive OHLCV chart right in your jupyter notebook:
from bokeh.io import output_notebook, show, push_notebook
output_notebook()
coin.plot_candles()
Step 3: Create a trading strategy
from futon.strategy import TradingStrategy
class MACDCrossover(TradingStrategy):
def setup(self):
self.macd = futon.indicators.MACD(fastperiod = 6,
slowperiod = 18,
signalperiod = 5,
plot_separately = True)
self.indicators = [self.macd]
def logic(self, account, lookback):
try:
today = lookback.iloc[-1]
macd_today, signal_today, _ = self.macd.lookback[-1]
macd_yest, signal_yest, _ = self.macd.lookback[-2]
# Buying
buy_signal = (macd_today > signal_today) and (macd_yest < signal_yest)
if buy_signal:
entry_price = today.close
entry_capital = account.buying_power
account.buy(entry_capital=entry_capital, entry_price=entry_price)
# Selling
sell_signal = (macd_today < signal_today) and (macd_yest > signal_yest)
if sell_signal:
percent = 1
exit_price = today.close
account.sell(percent=percent, current_price=exit_price)
except Exception as e:
print('ERROR:', e)
strat = MACDCrossover(coin)
Step 4: Run a backtest on historical data
strat.backtest(start_date = '2021-06-1 00:00:00', commision = 0.001, show_trades = True)
Output
Performing backtest from: 01 June, 2021 (00:00:00) to 21 June, 2021 (16:00:00)
-------------- Results ----------------
Relative Returns: -2.55%
Relative Profit: -25.49
Strategy : -36.4%
Net Profit : -363.96
Buy and Hold : -33.85%
Net Profit : -338.47
Buys : 75
Sells : 75
--------------------
Total Trades : 150
---------------------------------------
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file futon-1.0.0.tar.gz.
File metadata
- Download URL: futon-1.0.0.tar.gz
- Upload date:
- Size: 35.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
c8cf9e2782709b66dd367dd96fc30930a205715e07d5a0a7228dc3a16a640755
|
|
| MD5 |
88a1fa6856351e76acf768c22c875ade
|
|
| BLAKE2b-256 |
4b65fe8b1eeaba6b8dda34f51cb2098d0f4ed482fdc6d2ec5767a978f3de5599
|
File details
Details for the file futon-1.0.0-py3-none-any.whl.
File metadata
- Download URL: futon-1.0.0-py3-none-any.whl
- Upload date:
- Size: 36.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
3db290e361c6dfd34204dae8b6f5a325c6427a663a0c154c758a87bfacf40127
|
|
| MD5 |
c0ad0eb079d61b166c1b0a1fe1929398
|
|
| BLAKE2b-256 |
9608f8144812ad8b1950cb8d2e9a8fc7126ee0797e6da75a34077b0627c70083
|