Skip to main content

Fuzzy matching in pandas using csvmatch

Project description


A razor-thin layer over csvmatch that allows you to do fuzzy mathing with pandas dataframes.


pip install fuzzy_pandas


To borrow 100% from the original repo, say you have one CSV file such as:

George Smiley,London,Beggerman
Percy Alleline,London,Tinker
Roy Bland,London,Soldier
Toby Esterhase,Vienna,Poorman
Peter Guillam,Brixton,none
Bill Haydon,London,Tailor
Oliver Lacon,London,none
Jim Prideaux,Slovakia,none
Connie Sachs,Oxford,none

And another such as:

Person Name,Location
Maria Andreyevna Ostrakova,Russia
Otto Leipzig,Estonia
George SMILEY,London
Peter Guillam,Brixton
Konny Saks,Oxford
Saul Enderby,London
Sam Collins,Vietnam
Tony Esterhase,Vienna
Claus Kretzschmar,Hamburg

You can then find which names are in both files:

import pandas as pd
import fuzzy_pandas as fpd

df1 = pd.read_csv("data1.csv")
df2 = pd.read_csv("data2.csv")

matches = fpd.fuzzy_merge(df1, df2,
                          right_on=['Person Name'],

. name Person Name
0 George Smiley George SMILEY
1 Peter Guillam Peter Guillam


Dumping this out of the code itself, apologies for lack of pretty formatting.

  • left : DataFrame
  • right : DataFrame
    • Object to merge left with
  • on : str or list
    • Column names to compare. These must be found in both DataFrames.
  • left_on : str or list
    • Column names to compare in the left DataFrame.
  • right_on : str or list
    • Column names to compare in the right DataFrame.
  • left_cols : list, default None
    • List of columns to preserve from the left DataFrame.
    • Defaults to left_on.
  • right_cols : list, default None
    • List of columns to preserve from the right DataFrame.
    • Defaults to right_on.
  • method : str or list, default 'exact'
    • Perform a fuzzy match, and an optional specified algorithm.
    • Multiple algorithms can be specified which will apply to each field respectively.
    • Options:
      • exact: exact matches
      • levenshtein: string distance metric
      • jaro: string distance metric
      • metaphone: phoenetic matching algorithm
      • bilenko: prompts for matches
  • threshold : float or list, default 0.6
    • The threshold for a fuzzy match as a number between 0 and 1. Multiple numbers will be applied to each field respectively.
  • ignore_case : bool, default False
    • Ignore case (default is case-sensitive)
  • ignore_nonalpha : bool, default False
    • Ignore non-alphanumeric characters
  • ignore_nonlatin : bool, default False
    • Ignore characters from non-latin alphabets. Accented characters are compared to their unaccented equivalent
  • ignore_order_words : bool, default False
    • Ignore the order words are given in
  • ignore_order_letters : bool, default False
    • Ignore the order the letters are given in, regardless of word order
  • ignore_titles : bool, default False
    • Ignore a predefined list of name titles (such as Mr, Ms, etc)
  • join : { 'inner', 'left-outer', 'right-outer', 'full-outer' }

For more how-to information, check out [the examples folder]( or the [the original repo](

Project details

Release history Release notifications | RSS feed

This version


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fuzzy_pandas-0.1.tar.gz (3.9 kB view hashes)

Uploaded source

Built Distribution

fuzzy_pandas-0.1-py3-none-any.whl (5.2 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page