Skip to main content

safer package

Project description

SAFER

This guide provides SAFER model module

Baseline

  • Baseline
    • data_processing_m1
      • crf_data.py
      • location_data.py
      • sensor_data.py
    • data_processing_m2
      • crf_data.ppy
      • location_data.py
      • sensor_data.py
    • model1
      • dataloader.py
      • model.py
      • predictor.py
    • model2
      • dataloader.py
      • model.py
      • preictor.py
    • setup.py
    • README.md

How To Use

Start pip install

  • data processing

    1. location

      You can load location data from preprocess it as follows:

    
      from location_processor import LocationProcessor
    
      file_path = ''
      processed_location_data = LocationProcessor.load_data_from_csv(file_path)
    
      location_dict = {
          (37.7749, -122.4194): 'ward',
          (34.0522, -118.2437): 'hallway',
          (40.7128, -74.0060): 'other',
      }
    
      labeled_location_data = LocationProcessor.assign_location_labels(processed_data, location_dict)
    
    
      
    1. sensor

      you can load sensor data from preprocess it as follows :

      
       from sensor_processor import SensorDataProcessor
      
       file_path = ''
       sensing_data = SensorDataProcessor.load_sensing_data(file_path)
       sensing_data = SensorDataProcessor.process_sensing_data(sensing_data)
       sensing_data = SensorDataProcessor.aggregate_sensing_data(sensing_data)
       sensing_data = SensorDataProcessor.reorganize_column_names(sensing_data)
       
    2. patient data (2 type of data)

      you can load patient data from preprocess it as follows :

      
       from crf_data import DataProcessor
       status_file_path = ''
       trait_fiile_path = ''
          
       processor = DataProcessor()
      
       processor.load_data(
           location_file=labeled_location_data,
           sensor_file=sensing_data,
           crf_file= status_file_path ,
           trait_file= trait_fiile_path
       )
      
       processor.merge_location_and_sensor()
       processor.process_crf_data()
       processor.merge_trait_data()
      
      
      
       suicide_flags = [
           ('patient_key', pd.to_datetime('2023-12-02 00:00:00')),
           .
           .
       ]
      
      
      
       final_data = processor.clean_and_set_suicide_flag(suicide_flags)
       final_data = filter_data_for_self_harm_and_random(final_data, suicide_flags)
      
       
  • model

    you can predict m1 from preprocess it as follows :

    • m1
    
          from model1.model import TemporalFusionTransformer
          from model1.predictor import PredictionHandler
    
          data_paths = ['']
          predictor = PredictionHandler(data_paths, batch_size=16, device='cpu')
          predictions = predictor.predict()
    
       
    • m2
    
          from model2.predictor import Predictor
          import torch
          from model2.model import CNNGRUClassificationModel
    
          data_path = ''  
    
          device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
          predictor = Predictor(device=device)
    
          data_loader = predictor.preprocess_data(data_path)
    
          predictions = predictor.predict(data_loader)
    
          print(predictions)
    
      

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

g_saf-0.0.1-py3-none-any.whl (26.9 kB view details)

Uploaded Python 3

File details

Details for the file g_saf-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: g_saf-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 26.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for g_saf-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 66e8b7a0100efeb4113770ac8e9b5f7b39b508ed83dfd971dea2deb1f83cc6a8
MD5 4d9803029c6ba0a30a73f01a1f3e5322
BLAKE2b-256 42dd0c5cd00ec8810ebb31efbb189a53b8fbb13b4e7f2318d8b8ee00842fefae

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page