Skip to main content

gReLU is a python library to train, interpret, and apply deep learning models to DNA sequences

Project description

DOI

gReLU

gReLU is a Python library to train, interpret, and apply deep learning models to DNA sequences. Code documentation is available here.

Flowchart

Installation

To install from source:

git clone https://github.com/Genentech/gReLU.git
cd gReLU
pip install .

To install using pip:

pip install gReLU

Typical installation time including all dependencies is under 10 minutes.

To train or use transformer models containing flash attention layers, flash-attn needs to be installed first:

conda install -c conda-forge cudatoolkit-dev -y
pip install torch ninja
pip install flash-attn --no-build-isolation
pip install gReLU

Contributing

See our contribution guide.

Additional requirements

If you want to use genome annotation features through the function grelu.io.genome.read_gtf, you will need to install the following UCSC utilities: genePredToBed, genePredToGtf, bedToGenePred, gtfToGenePred, gff3ToGenePred.

If you want to create bigWig files through the function grelu.data.preprocess.make_insertion_bigwig, you will need to install the following UCSC utilities: bedGraphToBigWig.

UCSC utilities can be installed from http://hgdownload.cse.ucsc.edu/admin/exe/, for example using the following commands:

rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/bedGraphToBigWig /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/genePredToBed /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/genePredToGtf /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/bedToGenePred /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/gtfToGenePred /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/gff3ToGenePred /usr/bin/

or via bioconda:

conda install -y \
bioconda::ucsc-bedgraphtobigwig \
bioconda::ucsc-genepredtobed    \
bioconda::ucsc-genepredtogtf    \
bioconda::ucsc-bedtogenepred    \
bioconda::ucsc-gtftogenepred    \
bioconda::ucsc-gff3togenepred

If you want to create ATAC-seq coverage bigWig files using grelu.data.preprocess.make_insertion_bigwig, you will need to install bedtools. See https://bedtools.readthedocs.io/en/latest/content/installation.html for instructions.

Citation

Please cite our preprint: https://www.biorxiv.org/content/10.1101/2024.09.18.613778v1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grelu-1.0.9.tar.gz (24.4 MB view details)

Uploaded Source

Built Distribution

grelu-1.0.9-py3-none-any.whl (1.4 MB view details)

Uploaded Python 3

File details

Details for the file grelu-1.0.9.tar.gz.

File metadata

  • Download URL: grelu-1.0.9.tar.gz
  • Upload date:
  • Size: 24.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for grelu-1.0.9.tar.gz
Algorithm Hash digest
SHA256 ea59259bbbb40b91f93714f1943058bd0c765e48a40376564bf48a2543245e0a
MD5 04181eed00b90cd997c35c16e970e76d
BLAKE2b-256 ea1fda086d568913b86af853ca6ec56239a04e3765f38347c3273ac3712466d8

See more details on using hashes here.

File details

Details for the file grelu-1.0.9-py3-none-any.whl.

File metadata

  • Download URL: grelu-1.0.9-py3-none-any.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for grelu-1.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 87efc6e283f82504f31b73817e34ebcaf177f45a3e70f198a72546c427ca2fd2
MD5 085d406cff2cc3832af875fd58691d26
BLAKE2b-256 db7764e4977a917340dd9c1c0b9d028d367dd0efdd8f4ac6999e65bb3cdde509

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page