Skip to main content
Help the Python Software Foundation raise $60,000 USD by December 31st!  Building the PSF Q4 Fundraiser

Utility tools for GATE ARF simulations

Project description


pip install garf

Scripts associated with the publication: Phys Med Biol. 2018 Oct 17;63(20):205013. doi: 10.1088/1361-6560/aae331. Learning SPECT detector angular response function with neural network for accelerating Monte-Carlo simulations. Sarrut D, Krah N, Badel JN, Létang JM.

A method to speed up Monte-Carlo simulations of single photon emission computed tomography (SPECT) imaging is proposed. It uses an artificial neural network (ANN) to learn the angular response function (ARF) of a collimator-detector system. The ANN is trained once from a complete simulation including the complete detector head with collimator, crystal, and digitization process. In the simulation, particle tracking inside the SPECT head is replaced by a plane. Photons are stopped at the plane and the energy and direction are used as input to the ANN, which provides detection probabilities in each energy window. Compared to histogram-based ARF, the proposed method is less dependent on the statistics of the training data, provides similar simulation efficiency, and requires less training data. The implementation is available within the GATE platform.

Examples :

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for garf, version 2.1
Filename, size File type Python version Upload date Hashes
Filename, size garf-2.1-py3-none-any.whl (20.2 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size garf-2.1.tar.gz (14.3 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page