Cerberus and validator-collection based custom validator package (garlic_validator) for python projects.
Project description
Python Validator (garlic_validator)
Cerberus and validator-collection based custom validator package (garlic_validator) for python projects.
Features
- Validator-collection based validator - https://pypi.org/project/validator-collection
- Cerberus schema validation - https://pypi.org/project/Cerberus
- Pydantic validation - https://pypi.org/project/pydantic
- Custom validator module
- is_empty, is_numpy, is_tensor, is_float, is_truthy, is_falsy, is_bool, is_attr_empty
Installation
1. Prerequisites
- Python (>= v3.7)
- PyPi (>= v21)
2. Install garlic-validator
A. [RECOMMENDED] PyPi install
# Install or upgrade garlic-validator package:
pip install --upgrade garlic-validator
# To uninstall package:
pip uninstall -y garlic-validator
B. Manually add to PYTHONPATH (Recommended for development)
# Clone repository by git:
git clone https://github.com/bybatkhuu/python_validator.git garlic_validator
cd garlic_validator
# Install python dependencies:
pip install --upgrade pip
cat requirements.txt | xargs -n 1 -L 1 pip install --no-cache-dir
# Add current path to PYTHONPATH:
export PYTHONPATH="${PWD}:${PYTHONPATH}"
C. Manually compile and setup (Not recommended)
# Clone repository by git:
git clone https://github.com/bybatkhuu/python_validator.git garlic_validator
cd garlic_validator
# Building python package:
pip install --upgrade pip setuptools wheel
python setup.py build
# Install python dependencies with built package to current python environment:
python setup.py install --record installed_files.txt
# To remove only installed garlic-validator package:
head -n 1 installed_files.txt | xargs rm -vrf
# Or to remove all installed files and packages:
cat installed_files.txt | xargs rm -vrf
Usage/Examples
garlic-validator and validator-collection:
import numpy as np
from garlic_validator import validators, checkers, errors
try:
email_address = validators.email('test@domain.dev')
# The value of email_address will now be "test@domain.dev"
email_address = validators.email('this-is-an-invalid-email')
# Will raise a ValueError
email_address = validators.email(None)
# Will raise an EmptyValueError
except errors.EmptyValueError:
# Handling logic goes here
print('Email address is empty')
except errors.InvalidEmailError:
# More handlign logic goes here
print('Invalid email address')
email_address = validators.email(None, allow_empty=True)
print(email_address)
# The value of email_address will now be None
email_address = validators.email('', allow_empty=True)
print(email_address)
# The value of email_address will now be None
is_email_address = checkers.is_email('test@domain.dev')
print(is_email_address)
# The value of is_email_address will now be True
is_email_address = checkers.is_email('this-is-an-invalid-email')
print(is_email_address)
# The value of is_email_address will now be False
is_email_address = checkers.is_email(None)
print(is_email_address)
# The value of is_email_address will now be False
## Custom validators:
## is_empty(val, trim_str=False)
is_empty = checkers.is_empty(None)
# True
is_empty = checkers.is_empty('')
# True
is_empty = checkers.is_empty(' ')
# False
is_empty = checkers.is_empty(' ', trim_str=True)
# True
is_empty = checkers.is_empty([])
# True
is_empty = checkers.is_empty({})
# True
is_empty = checkers.is_empty(())
# True
is_empty = checkers.is_empty(set())
# True
is_empty = checkers.is_empty(range(0))
# True
is_empty = checkers.is_empty(np.array([]))
# True
## is_numpy(val)
is_numpy = checkers.is_numpy(np.array([]))
# True
is_numpy = checkers.is_numpy(np.array([1, 2, 3]))
# True
is_numpy = checkers.is_numpy(None)
# False
## is_float(val)
is_float = checkers.is_float(1)
# True
is_float = checkers.is_float(-1.1123)
# True
is_float = checkers.is_float(1e+123)
# True
is_float = checkers.is_float('0123.000')
# True
is_float = checkers.is_float('1e+12')
# True
is_float = checkers.is_float('2002_12')
# False
## is_truthy(val)
is_truthy = checkers.is_truthy(True)
# True
is_truthy = checkers.is_truthy(1)
# True
is_truthy = checkers.is_truthy('1')
# True
is_truthy = checkers.is_truthy('1.0')
# True
is_truthy = checkers.is_truthy('TRUE')
# True
is_truthy = checkers.is_truthy('True')
# True
is_truthy = checkers.is_truthy('true')
# True
is_truthy = checkers.is_truthy('YES')
# True
is_truthy = checkers.is_truthy('Yes')
# True
is_truthy = checkers.is_truthy('yes')
# True
is_truthy = checkers.is_truthy('Y')
# True
is_truthy = checkers.is_truthy('y')
# True
is_truthy = checkers.is_truthy(1.1)
# False
is_truthy = checkers.is_truthy([1])
# False
is_truthy = checkers.is_truthy(False)
# False
## is_falsy(val)
is_falsy = checkers.is_falsy(False)
# True
is_falsy = checkers.is_falsy(0)
# True
is_falsy = checkers.is_falsy('0')
# True
is_falsy = checkers.is_falsy('0.0')
# True
is_falsy = checkers.is_falsy('FALSE')
# True
is_falsy = checkers.is_falsy('False')
# True
is_falsy = checkers.is_falsy('false')
# True
is_falsy = checkers.is_falsy('NO')
# True
is_falsy = checkers.is_falsy('No')
# True
is_falsy = checkers.is_falsy('no')
# True
is_falsy = checkers.is_falsy('N')
# True
is_falsy = checkers.is_falsy('n')
# True
is_falsy = checkers.is_falsy(2)
# False
is_falsy = checkers.is_falsy('a')
# False
is_falsy = checkers.is_falsy(True)
# False
## is_bool(val, coerce_value=False)
is_bool = checkers.is_bool(True)
# True
is_bool = checkers.is_bool(False)
# True
is_bool = checkers.is_bool(1)
# False
is_bool = checkers.is_bool('1', coerce_value=True)
# True
is_bool = checkers.is_bool('NO', coerce_value=True)
# True
Cerberus:
from cerberus import Validator
v = Validator({ 'name': { 'type': 'string' } })
print(v.validate({ 'name': 'john doe' }))
# True
v.schema = {'amount': {'type': 'integer'}}
print(v.validate({'amount': '1'}))
# False
print(v.errors)
# {'amount': ['must be of integer type']}
v.schema = {'amount': {'type': 'integer', 'coerce': int}}
print(v.validate({'amount': '1'}))
# True
print(v.document)
# {'amount': 1}
to_bool = lambda v: v.lower() in ('true', '1')
v.schema = {'flag': {'type': 'boolean', 'coerce': (str, to_bool)}}
print(v.validate({'flag': 'true'}))
# True
print(v.document)
# {'flag': True}
pydantic:
from pydantic import validate_arguments, ValidationError
@validate_arguments
def repeat(s: str, count: int, *, separator: bytes = b'') -> bytes:
b = s.encode()
return separator.join(b for _ in range(count))
a = repeat('hello', 3)
print(a)
#> b'hellohellohello'
b = repeat('x', '4', separator=' ')
print(b)
#> b'x x x x'
try:
c = repeat('hello', 'wrong')
except ValidationError as exc:
print(exc)
"""
1 validation error for Repeat
count
value is not a valid integer (type=type_error.integer)
"""
Running Tests
To run tests, run the following command:
pytest
References
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
garlic_validator-1.0.1.tar.gz
(6.2 kB
view hashes)
Built Distribution
Close
Hashes for garlic_validator-1.0.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4abc34c65f055f6883aae42e7a38cb0af408fed22e29a1e95f9c521b0a1653aa |
|
MD5 | caa463cdb888c7d449ca152557d6a9f6 |
|
BLAKE2b-256 | 22b643667bc02ca6027f415ae6f5520eb151edf849a538950b7f81f89bbe00d7 |