Skip to main content

A Python interface to gb-io, a fast GenBank parser and serializer written in Rust.

Project description

🧬🏦 gb-io.py Stars

A Python interface to gb-io, a fast GenBank parser and serializer written in Rust.

Actions Coverage License PyPI Bioconda AUR Wheel Python Versions Python Implementations Source Mirror GitHub issues Changelog Downloads Docs

🗺️ Overview

gb-io.py is a Python package that provides an interface to gb-io, a very fast GenBank format parser implemented in Rust. It can reach much higher speed than the Biopython or the scikit-bio parsers.

This library has no external dependency and is available for all modern Python versions (3.7+).

To improve performance, the library implements a copy-on-access pattern, so that data is only copied on the Python heap when it is actually being accessed, rather than on object creation. For instance, if the consumer of the parser only requires the GenBank features and not the record sequence, the sequence will not be copied to a Python bytes object.

🔧 Installing

Install the gb-io package directly from PyPi which hosts pre-compiled wheels that can be installed with pip:

$ pip install gb-io

Wheels are provided for common platforms, such as x86-64 Linux, Windows and MacOS, as well as Aarch64 Linux and MacOS. If no wheel is available, the source distribution will be downloaded, and a local copy of the Rust compiler will be downloaded to build the package, unless it is already installed on the host machine.

📖 Documentation

A complete API reference can be found in the online documentation, or directly from the command line using pydoc:

$ pydoc gb_io

💡 Usage

Use the gb_io.load function to obtain a list of all GenBank records in a file:

records = gb_io.load("tests/data/AY048670.1.gb")

Reading from a file-like object is supported as well, both in text and binary mode:

with open("tests/data/AY048670.1.gb") as file:
    records = gb_io.load(file)

It is also possible to iterate over each record in the file without having to load the entirety of the file contents to memory with the gb_io.iter method, which returns an iterator instead of a list:

for record in gb_io.iter("tests/data/AY048670.1.gb"):
    print(record.name, record.sequence[:10])

You can use the gb_io.dump method to write one or more records to a file (either given as a path, or a file-like handle):

with open("tests/data/AY048670.1.gb", "wb") as file:
    gb_io.dump(records, file)

📝 Example

The following small script will extract all the CDS features from a GenBank file, and write them in FASTA format to an output file:

import gb_io

with open("tests/data/AY048670.1.faa", "w") as dst:
    for record in gb_io.iter("tests/data/AY048670.1.gb"):
        for feature in filter(lambda feat: feat.type == "CDS", record.features):
            qualifiers = feature.qualifiers.to_dict()
            dst.write(">{}\n".format(qualifiers["locus_tag"][0]))
            dst.write("{}\n".format(qualifiers["translation"][0]))

Compared to similar implementations using Bio.SeqIO.parse, Bio.GenBank.parse and Bio.GenBank.Scanner.GenBankScanner.parse_cds_features, the performance is the following:

gb_io.iter GenBankScanner GenBank.parse SeqIO.parse
Time (s) 2.264 7.982 15.259 19.351
Speed (MiB/s) 136.5 37.1 20.5 16.2
Speedup x8.55 x2.42 x1.27 -

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

🏗️ Contributing

Contributions are more than welcome! See CONTRIBUTING.md for more details.

⚖️ License

This library is provided under the MIT License. The gb-io Rust crate package was written by David Leslie and is licensed under the terms of the MIT License. This package vendors the source of several additional packages that are licensed under the Apache-2.0, MIT or BSD-3-Clause licenses; see the license file distributed with the source copy of each vendored dependency for more information.

This project is in no way not affiliated, sponsored, or otherwise endorsed by the original gb-io authors. It was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gb_io-0.3.3.tar.gz (18.5 MB view details)

Uploaded Source

Built Distributions

gb_io-0.3.3-pp310-pypy310_pp73-win_amd64.whl (321.6 kB view details)

Uploaded PyPy Windows x86-64

gb_io-0.3.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (481.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

gb_io-0.3.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (492.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

gb_io-0.3.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (431.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

gb_io-0.3.3-pp39-pypy39_pp73-win_amd64.whl (322.3 kB view details)

Uploaded PyPy Windows x86-64

gb_io-0.3.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (482.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

gb_io-0.3.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (493.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

gb_io-0.3.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (432.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

gb_io-0.3.3-pp38-pypy38_pp73-win_amd64.whl (321.1 kB view details)

Uploaded PyPy Windows x86-64

gb_io-0.3.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (482.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

gb_io-0.3.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (493.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

gb_io-0.3.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (432.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

gb_io-0.3.3-pp37-pypy37_pp73-win_amd64.whl (323.5 kB view details)

Uploaded PyPy Windows x86-64

gb_io-0.3.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (484.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

gb_io-0.3.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (495.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

gb_io-0.3.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (434.7 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

gb_io-0.3.3-cp312-cp312-win_amd64.whl (320.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

gb_io-0.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (485.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

gb_io-0.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (495.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

gb_io-0.3.3-cp312-cp312-macosx_11_0_arm64.whl (425.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

gb_io-0.3.3-cp312-cp312-macosx_10_9_x86_64.whl (433.4 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

gb_io-0.3.3-cp311-cp311-win_amd64.whl (321.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

gb_io-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (483.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

gb_io-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (493.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

gb_io-0.3.3-cp311-cp311-macosx_11_0_arm64.whl (424.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

gb_io-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl (432.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

gb_io-0.3.3-cp310-cp310-win_amd64.whl (322.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

gb_io-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (482.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

gb_io-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (494.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

gb_io-0.3.3-cp310-cp310-macosx_11_0_arm64.whl (424.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

gb_io-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl (432.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

gb_io-0.3.3-cp39-cp39-win_amd64.whl (323.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

gb_io-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (483.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

gb_io-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (495.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

gb_io-0.3.3-cp39-cp39-macosx_11_0_arm64.whl (424.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

gb_io-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl (432.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

gb_io-0.3.3-cp38-cp38-win_amd64.whl (322.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

gb_io-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (483.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

gb_io-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (495.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

gb_io-0.3.3-cp38-cp38-macosx_11_0_arm64.whl (424.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

gb_io-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl (433.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

gb_io-0.3.3-cp37-cp37m-win_amd64.whl (323.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

gb_io-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (484.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

gb_io-0.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (495.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

gb_io-0.3.3-cp37-cp37m-macosx_10_9_x86_64.whl (433.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file gb_io-0.3.3.tar.gz.

File metadata

  • Download URL: gb_io-0.3.3.tar.gz
  • Upload date:
  • Size: 18.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gb_io-0.3.3.tar.gz
Algorithm Hash digest
SHA256 5c628ba04e690b7bdb72cc4fb65230a169e0d1ca029f5b07ae3bba84f65d5c47
MD5 2c7123d9c05f113482125fa0e91e9d0f
BLAKE2b-256 76a47f974093876e80777a64e1ec11ca5e365f7aa68a425115969e763310a54d

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4e3997033db0e1e1b24873fca9812ec4a66120b3d0fa2acd899dc43143a21656
MD5 e739081be43a5b6da009eb3b1d72a0f4
BLAKE2b-256 1e2b64da72d9a51d8e2d96e892270d21d210c1e0b078e49bb61e5213d5aa485c

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1344236987b33bb87d6f20df586966161fca71cf566fb0896485a0e9dfbb88dd
MD5 99ef3e881a4b7eea7d6c591f08c3117c
BLAKE2b-256 153daddddc26cb3e1adc1ff93f1c3526351239cd093121d88dbbef299c68fe5d

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17e55c053e5e7c59e9ce9664dde8ada8816a1ef60a290980ce38c2dc2f11484a
MD5 986134e36aac45c8df888e07ea00b7dc
BLAKE2b-256 b8207796951a343056b5d924c58a179b564e393d7aee8d0fd72c9457a7352361

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4dc25e78511bac040f58f5c1a2afa93aef71bb526670131e5a7d5c1daf0cc465
MD5 a66e467231888f3ab1645fa308c01113
BLAKE2b-256 f6323e0abf988eac5e27d0475366a44895f1347ee21f8830d42787121a01e602

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 25b64c2bc9a2d6e7fd6bb091e5611b0bcb24fdb0de3f53515000a67e448e49b5
MD5 441e696f2533b7d37403eeee1d345425
BLAKE2b-256 3ad4384ceeefd776c231969281aef9d78113ab015a6acf2bb50dc7a8bd9d0248

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79e469ef81739e4ba20e855d43025011975fa2e88087f82d2fff5b6fa6b5bc0c
MD5 0d0b915e5d9f3fd99d011c5d4fdc0e9d
BLAKE2b-256 22669a473e94ad955b2e67f9186a0e4ed4393c95dad17af612100929866fdae2

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f7c5d9553a7b7c0c0be1e1240f6241767c265fec6ba5c0589b4ca8803915c2e0
MD5 839facd271ffd9181df80a29586d7ff4
BLAKE2b-256 2399a2c76993e5f62ade40bc63a897a20c1948904a482492f0d1838a3725005c

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e98596b6eda67d3b1e0b32ee4c1d11e18a79e7a107c8a32db8386d49a1982d8d
MD5 723a758b546eacf1443f0ab23d647c7a
BLAKE2b-256 4a58c9473916b54f023ad8c384246e1fda80a776cf4512982bb3cbcf34f90ed8

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7cdb7f7b7d54bcebccd6b63991f43ad71b020a392f78e1e45dd20f4f780508fa
MD5 b44e7931ffa1b2c8cb6e892870c6eb97
BLAKE2b-256 afab4d392a9ba35759949b7e9dc9042d96765c3b1f8121d53796797d2ee640a2

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88ddc5fddf39ca75713e5f44681f1cb8c3e8f24cf541f42b2d201afdcd4955ae
MD5 87cffa858bd18c66b3adba06b25729a8
BLAKE2b-256 68bf532095fcf4fe552609082f4ef237295a4b9492baa5a9ebc16734dfbe80ab

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 29e794e13e13775f52934f8d432ba0e61d2953978c1cecea9757f0f4e6266e90
MD5 3a50b90c2d63e7b68e83ddff43a475b6
BLAKE2b-256 fcc31ac97388ef294cbe5e28d11ffcbc0d114f47c8a6303bf30fd8399543649b

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 490bf0e59f0db89778fc2c2863f6a3dcdadaf617482c91b4f01b93e88bbd285c
MD5 dedbbb5960cb198fd0f1f231db7e5770
BLAKE2b-256 672c2058f188b08a6b1ba802a29c4e91ce65c2491e050665cf998d49e0571585

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 eb22df9dcce593d02689498bb6bf63d23447e0ae759dee4b22bb560306bf144d
MD5 4a796c1162ec91fd2194dac9a992b3c5
BLAKE2b-256 90fdff686a247179e149dfe8e629b2cd668d9e0433c915de3a228f73111a42dc

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 338d7973893bab0c699486b2d9a8d3a86127d9ddf32bfad3d4675bde8b7b4452
MD5 3f616d4677e7cbeecbeb5aa2621e5b02
BLAKE2b-256 1de60aef0634d93d2108585c72457457158adf55999b50e8651e2aab63aa9e29

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4b201de0a5202b86d8e0fd6ef5897240b08b24a96df46f8c382496a24d097cf2
MD5 4da48d8a269ac602653c66e451e5db16
BLAKE2b-256 1610804bddd47a0639523f1a64cb2a6a8bbba979baba1b8fea6a6d7908cd2af3

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3c033ee6875a21f97bbde205286eaa5bc1a91b454ec04b30b38e37e85ea03f5a
MD5 60c0c0f05c796608fd85ace190a7b2b6
BLAKE2b-256 a9e8c71d4c7ec15ab23e93102d10569920ea8ae8004eeac66184e1e9f9295a9f

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: gb_io-0.3.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 320.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gb_io-0.3.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 86df6681db036906cdf31dac2f2a20692037cb87836b2d7fdd22ca639375cbb0
MD5 1e485f5d226557dbf0db268e55eedcc8
BLAKE2b-256 35b1aae7742a051c3eac4de4454ee35856858f6fdaa39a63a21e22145254c226

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4349fefff2bf5f3cf0767ebf6c34259d3a8fba23e0df8107cd8ffcf98abd2da
MD5 98fb6c9d5d949c6dbb240e9046640e89
BLAKE2b-256 d6fcb1f1f0e09b0befaadab2c3687c49ad71a22d6b31aa83515facbf803993ed

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0a83488270cc370e8c782dc18940322527257f86a1535f58860fa112d8425d08
MD5 f96b18ac18ed603addb666c1b6f046b4
BLAKE2b-256 39a2a2226e68c2f2296bc6eee750cead93ee71bf0fe2afa7a01677d083c76bd5

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f2a5890fe9ac2d5828deaf91805806bfd8c61eb7ccfb61fe1677b54817018ed1
MD5 8328bfc05f75522f9e39ee90325d6878
BLAKE2b-256 9c175d61445eddd22388681d75ef2dd3ca8761b163fcd4772df24f27a5752cff

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 affab2f80aac6e468b146466b08778de01e10f2aae0507c76b0673a8068c613e
MD5 4c11c683f5b46de95a77e84afe085de9
BLAKE2b-256 8b9cdc92892b58a2b080513ff56bfc9e9b3a8c2ae90f495ca6c6b396ddc7d485

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gb_io-0.3.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 321.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gb_io-0.3.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c7b79852fec91847696c4cb0e41060afef41530521b1f8d9ec771dc30baaa2a9
MD5 6fcbc4640c80e223f28d24a7610e5669
BLAKE2b-256 c4fa89257bc2f114a97cc7ad73b36fa2090cd79a034f896f69fb33c9ebc0e90c

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 260134fb12a3fca68407923dad6fb096b231e2f2062c0e7ddd8f23d1a1f6085d
MD5 064a6b7f6ac55e64cdac81c7b3598524
BLAKE2b-256 f839697c8f5eb811efa64193ff669c36dc97172d33d809f1c6491a5f06875c5e

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c19edaa68e2dce5f2aed9735bde8f108c54f6b555aad10bb6d2aaf067c4f94e7
MD5 6d4f59a7fd2c3b53e170ee77f98ca785
BLAKE2b-256 cf95966b9915886fa0f707e055b0d4dc782f337e9e3c9671da689e37620462c2

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1324d0879db1dc3fb7617b866290600062ef399b03b2f02bf8dc486eb411aa68
MD5 ffe7e522774983b5c039b3e04702b8b6
BLAKE2b-256 30cb95e072081c5ac305a48c9b16d7d7ce63aff68a239f5c9ece797546bb75fa

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d9fee12be610469ee8667484c33de4c11809a5942cca1e0227caa7e040904c0d
MD5 744c6fd968b585ce8c1c89f5a9641b10
BLAKE2b-256 c3d204ec819b01a6e41e89ad732d2c1865bb14cc848037fad0dc6f99da6685a2

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gb_io-0.3.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 322.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gb_io-0.3.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 445d7ebfe1a8515e626e0efecb6210039c3edf162cb7e2a17af22e2b553b50fe
MD5 ec1c8d4af4d15344fd78f2bac8d8f9ce
BLAKE2b-256 c866ae6cd186bbfb0aa1071e792d0b9dc913ab2d5e62bf2d53f35bd7c190a79b

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0607a15a6d51afa93aacbfb67ed7858117b6a5f28958ec742f3230c310ea779f
MD5 974d5a3a27b77c69567cd2ae65f2fe01
BLAKE2b-256 bc1b885d52b0f6dbf70f36e41d311f473722e4aed64f697c607f8809d754f31b

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ebcfc43670afc39fe4008d99f40e108725c093075ef855faeb492fa77c007e6b
MD5 a0732d341e4877f577fcf6dc7991a093
BLAKE2b-256 d7fdd74b37aae9993ce326cdadc0dee52d06a106e4911deb5f92b9fa813af3d0

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5b347c245de2498ba1ec1bc2efefe700850ef4c428f8e4b5533b1aeebc0e942a
MD5 dcbd5579a692fe8b94c140c48ba4ab34
BLAKE2b-256 81b220d5613e0b6c18f196e255f968650656f5a7428ca7b897e2764035bad7bc

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 06b62484037d43bdf64afcf0a3a3152ed038463b7f10c5bbe68ad0555aa67600
MD5 14d31d93819edfeccf088fd5703fe30e
BLAKE2b-256 0cbc2f7282de1382dfd1c0c0f43b6f012419e397c6b58fda3d2917cc6b28ca58

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gb_io-0.3.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 323.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gb_io-0.3.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c2badd33e760015c9c1f1ec3b733a4536c8ac57d9901055a69253066006b2b0e
MD5 21dba7e0b86ce0ce8829c1f342dc84f3
BLAKE2b-256 2165d252a48d25d5cf713b7405dc186168a501ee27fab6b5774b16de4a711344

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aac1245e90ed73e90af36671ab342c8635a47492cb282e271a463e3f1d3573fb
MD5 0408d615e662ed5d071c2197084beb76
BLAKE2b-256 190c9d4e215dd67ebc4589e77e573ba70f15c0b87d0cd5aff8bfc23309638fe6

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1aaee0621f084b980fac8011bd0c5737da4363cd84caa006c7989e34caa7ce26
MD5 bbdd4beeb8c3efef65a49e5f0df056a1
BLAKE2b-256 f5c18a222eb149246a3184dde6d7d7d7669f5e242e1d371999b8317ccd5d04a5

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fea81534c2b39ca893996d7036f48f1c9f79e244e56530d32acef23f8d7ab843
MD5 697d64735d303bc288c493c642ba956f
BLAKE2b-256 805bd783c664d3ea9fb412ee8487d1835130f4394e260b2205989f5909f0dc05

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f9ac44257769e90da3a35b9512a0c6b05499017b8c1ea00d0e63502c572791dc
MD5 3075995fcfa1706516e4f03736308739
BLAKE2b-256 b2135f504c4b29a3e978774d6ab932d60c3a6d08859088f2f14632792796cd02

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gb_io-0.3.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 322.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gb_io-0.3.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ac4b5cec2284a35e297eb03d6a566c48f5b5694440497f27b3ef237d03c3d72b
MD5 a326802b4f35eef4c53809b0154c49a1
BLAKE2b-256 4615a0177627e94292b2cc508579e79ac145d6bbc58bc98e5adca6604e53a430

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59751a550ef41daaa0a2e855b65f5d0bff762a9ffa80ac3ae8f07b00bc2c145a
MD5 e3f4f25c1d41b94116794955d31ae2fe
BLAKE2b-256 9d55e6e4d1792cbacc82e0406f55742120182b04f53c2239817641e799244134

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 685b50f6e36011ecb6ebe26a00c3721ca78850d018ba99d642ae6806801b944a
MD5 a570b7cbf72664c41ed784d3fe102391
BLAKE2b-256 92b11562f5037eba75ce2249f538b4f087dc1992a227734f54b9d4cf775d3c65

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3670dc45226c2f2881d7bf83674e4f87c570ae53c1f03422e8be8fa6773c06e4
MD5 d2e74ed0ec55bb00d25b1c571fb39072
BLAKE2b-256 18557c85d42da3caa2cea7d6ffb6e42a96260012b41c7c4f362aea3cbb9b1166

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d9c3cd74dac9766196de7cd4dfb0bf6830bfaf28cadfdccb77784998b8bdc5d
MD5 b17591d01f06dbd53927ffb8b0b953cc
BLAKE2b-256 ff39a919b33980246be8d3a9623ddd8df1231aa44003a78dc28879928b5da418

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gb_io-0.3.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 323.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gb_io-0.3.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a68c3ede0e11a127bb7ac0f03f779babd79fcafe67fe6a69c3fdd0bb6990f83a
MD5 2a67632d8f4c033392ba5aa30f9f282f
BLAKE2b-256 5ddd7592f76a7dc2a68261148e448efe25cae5106147f3bd134c6a442c0c0c02

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c60283d7734192f885e615260d8442aa0c183e8198238db7f0775d7db139aa3d
MD5 38fba8db4bc268cb62126b45fb6a94e3
BLAKE2b-256 aa758432f5cb7b274d084840d6c93356f26b3c6b7d227f450af390c74f7fedae

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 093301af8b9b26b9c069fd20d0be09c75f8444f4676251c9294810e70f834901
MD5 1a23b437ad2549aa656ce6f0a1fc8160
BLAKE2b-256 e1f5eb7858bf329a7a754d45d09483e4f2c93e776303c84aa6efe35dbc1401f8

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.3.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.3.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b9392933b1c9a3f3bfdcd0951ac4d6e67a51f9517083c63a3de1db788b57763
MD5 e3d2e2d709be4f347e84c5f25e3bcd9a
BLAKE2b-256 b5c0bafddcf41d815c7c075af3205dafe7bbaf4338baf6cf3fcb1b5d1f8d8651

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page