Set of algorithms and structures related to geodesy and geospatial data

## Project description

Set of algorithms and structures related to geodesy.

## API

### geo.sphere

Functions onto sphere

#### geo.sphere.approximate_distance

```def approximate_distance(point1, point2):
```

Approximate calculation distance (expanding the trigonometric functions around the midpoint)

#### geo.sphere.haversine_distance

```def _haversine_distance(point1, point2):
```

Calculating haversine distance between two points (see https://en.wikipedia.org/wiki/Haversine_formula, https://www.math.ksu.edu/~dbski/writings/haversine.pdf)

Is numerically better-conditioned for small distances

#### geo.sphere.distance

```def distance(point1, point2):
```

Calculating great-circle distance (see https://en.wikipedia.org/wiki/Great-circle_distance)

#### geo.sphere.bearing

```def bearing(point1, point2):
```

Calculating initial bearing between two points (see http://www.movable-type.co.uk/scripts/latlong.html)

#### geo.sphere.final_bearing

```def final_bearing(point1, point2):
```

Calculating finatl bearing (initial bering + 180) between two points

#### geo.sphere.destination

```def destination(point, distance, bearing):
```

Given a start point, initial bearing, and distance, this will calculate the destina­tion point and final bearing travelling along a (shortest distance) great circle arc. (see http://www.movable-type.co.uk/scripts/latlong.htm)

#### geo.sphere.approximate_destination

```def approximate_destination(point, distance, theta):
```

#### geo.sphere.from4326_to3857

```def from4326_to3857(point):
```

Reproject point from EPSG:4326 (https://epsg.io/4326) to EPSG:3857 (https://epsg.io/3857) (see http://wiki.openstreetmap.org/wiki/Mercator)

Spherical Mercator:
E = R*(λ - λo) N = R*ln(tan(π/4+φ/2))

#### geo.sphere.from3857_to4326

```def from4326_to3857(point):
```

Reproject point from EPSG:3857 (https://epsg.io/3857) to EPSG:4326 (https://epsg.io/4326) (see http://wiki.openstreetmap.org/wiki/Mercator)

Reverse Spherical Mercator:
λ = E/R + λo φ = π/2 - 2*arctan(exp(-N/R))

### geo.ellipsoid

Functions onto ellipsoid

#### geo.ellipsoid.distance

```def distance(point1, point2, ellipsoid=WGS84):
```

Calculating distance with using vincenty’s formula (see https://en.wikipedia.org/wiki/Vincenty’s_formulae)

#### geo.ellipsoid.from4326_to3395

```def from4326_to3395(point, ellipsoid=WGS84):
```

Reproject point from EPSG:4326 (https://epsg.io/4326) to EPSG:3395 (https://epsg.io/3395) (see https://en.wikipedia.org/wiki/Mercator_projection#Generalization_to_the_ellipsoid)

Ellipsoidal Mercator:
E = a*(λ - λo) N = a*ln(tan(π/4+φ/2)*((1-e*sin(φ))/(1+e*sin(φ)))**e/2)

#### geo.ellipsoid.from3395_to4326

```def from3395_to4326(point, ellipsoid=WGS84):
```

Reproject point from EPSG:3395 (https://epsg.io/3395) to EPSG:4326 (https://epsg.io/4326) (see https://en.wikipedia.org/wiki/Mercator_projection#Generalization_to_the_ellipsoid)

Reverse Ellipsoidal Mercator:
λ = E/a + λo φ = π/2 + 2*arctan(exp(-N/a)*((1-e*sin(φ))/(1+e*sin(φ))**e/2))

## Project details

This version 0.4 0.3 0.2 0.1