This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description
geog
====

A pure numpy implementation for geodesic functions. The interfaces are
vectorized according to numpy broadcasting rules compatible with a variety of
inputs including lists, numpy arrays, and
[Shapely](http://toblerity.org/shapely/) geometries - allowing for 1-to-1,
N-to-1, or the element-wise N-to-N calculations in a single call.

`geog` uses a spherical Earth model (subject to change) with radius 6371.0 km.

`geog` draws inspiration from [TurfJS](https://www.turfjs.org)


Operations
---------
* `distance` - Compute the distance in meters between any number of longitude,latitude points
* `course` - Compute the forward azimuth between points
* `propagate` - Starting from some points and pointing azimuths, move some
distance and compute the final points.


Getting Started
---------------

Compute the distance in meters between two locations on the surface of the
Earth.
```
>>> import geog

>>> boston = [-71.0589, 42.3601]
>>> la = [-118.2500, 34.0500]

>>> geog.distance(boston, la)
4179393.4717019284


>>> geog.course(boston, la)
176.76437002826202

```

`geog` allows different sizes of inputs conforming to numpy broadcasting
rules

Compute the distances from several points to one point.
```
>>> dc = [-77.0164, 38.9047]
>>> paris = [2.3508, 48.8567]
>>> geog.distance([boston, la, dc], paris)
array([ 5531131.56144631, 9085960.07227854, 6163490.48394848])

```

Compute the element-wise distance of several points to several points
```
>>> sydney = [151.2094, -33.865]
>>> barcelona = [2.1833, 41.3833]
>>> geog.distance([boston, la, dc], [paris, sydney, barcelona])
array([ 5531131.56144631, 12072666.9425518 , 6489222.58111716])

```

`geog` functions can take numpy arrays as inputs
```
>>> import numpy as np
>>> points = np.array([boston, la, dc])
>>> points
array([[ -71.0589, 42.3601],
[-118.25 , 34.05 ],
[ -77.0164, 38.9047]])
>>> geog.distance(points, sydney)
array([ 16239763.03982447, 12072666.9425518 , 15711932.63508411])
```


`geog` functions can also take Shapely geometries as inputs
```
>>> import shapely.geometry
>>> p = shapely.geometry.Point([-90.0667, 29.9500])
>>> geog.distance(points, p)
array([ 2185738.94680724, 2687705.07260978, 1554066.84579387])

```


Other Uses
----------------
Use `propagate` to buffer a single point by passing in multiple angles.

```
>>> n_points = 6
>>> d = 100 # meters
>>> angles = np.linspace(0, 360, n_points)
>>> polygon = geog.propagate(p, angles, d)

```

Compute the length of a line over the surface.
```
>>> np.sum(geog.distance(line[:-1,:], line[1:,:]))
```


Quick Documentation
-------------
`distance(p0, p1, deg=True)`

`course(p0, p1, deg=True, bearing=False)`

`propagate(p0, angle, d, deg=True, bearing=False)`

For all of the above, `p0` or `p1` can be:
- single list, tuple, or Shapely Point of [lon, lat] coordinates
- list of [lon, lat] coordinates or Shapely Points
- N x 2 numpy array of (lon, lat) coordinates

If argument `deg` is False, then all angle arguments, coordinates and
azimuths, will be used as radians. If `deg` is False in `course()`, then it's
output will also be radians.

Consult the documentation on each function for more detailed descriptions of
the arguments.


Conventions
-----------
* All points, or point-like objects assume a longitude, latitude ordering.
* Arrays of points have shape `N x 2`.
* Azimuth/course is measured with 0 degrees as due East, increasing
counter-clockwise so that 90 degrees is due North. The functions that
operate on azimuth accept a `bearing=True` argument to use the more
traditional definition where 0 degrees is due North increasing clockwise such
that that 90 degrees is due East.


Installation
-----------
geog is hosted on PyPI.

```
pip install geog
```


See also
--------
* `geog` is partly inspired by [TurfJS](https://www.turfjs.org)

* [PostGIS](http://postgis.net/docs/manual-1.5/ch04.html#Geography_Basics) geography type
* [Shapely](https://github.com/toblerity/shapely)
* [Proj.4](https://trac.osgeo.org/proj/)
Release History

Release History

0.0.2

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
geog-0.0.2.tar.gz (5.0 kB) Copy SHA256 Checksum SHA256 Source Feb 4, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting