Skip to main content

Parser for GIS metadata standards including ArcGIS, FGDC and ISO-19115

Project description


XML parsers for GIS metadata that are designed to read in, validate, update and output a core set of properties that have been mapped between the most common standards, currently:

  • FGDC
  • ISO-19139 (and ISO-19115)
  • ArcGIS (tested with ArcGIS format 1.0).

This library is compatible with Python versions 2.7 and 3.4 through 3.6.

Build Status Coverage Status


Install with pip install gis-metadata-parser.


Parsers can be instantiated from files, XML strings or URLs. They can be converted from one standard to another as well.

from gis_metadata.arcgis_metadata_parser import ArcGISParser
from gis_metadata.fgdc_metadata_parser import FgdcParser
from gis_metadata.iso_metadata_parser import IsoParser
from gis_metadata.metadata_parser import get_metadata_parser

# From file objects
with open(r'/path/to/metadata.xml') as metadata:
    fgdc_from_file = FgdcParser(metadata)

with open(r'/path/to/metadata.xml') as metadata:
    iso_from_file = IsoParser(metadata)

# Detect standard based on root element, metadata
fgdc_from_string = get_metadata_parser(
    <?xml version='1.0' encoding='UTF-8'?>

# Detect ArcGIS standard based on root element and its nodes
iso_from_string = get_metadata_parser(
    <?xml version='1.0' encoding='UTF-8'?>

# Detect ISO standard based on root element, MD_Metadata or MI_Metadata
iso_from_string = get_metadata_parser(
    <?xml version='1.0' encoding='UTF-8'?>

# Convert from one standard to another
fgdc_converted = iso_from_file.convert_to(FgdcParser)
iso_converted = fgdc_from_file.convert_to(IsoParser)
arcgis_converted = iso_converted.convert_to(ArcGISParser)

# Output supported properties as key value pairs (dict)
fgdc_key_vals = fgdc_from_file.convert_to(dict)
iso_key_vals = iso_from_file.convert_to(dict)

Finally, the properties of the parser can be updated, validated, applied and output:

with open(r'/path/to/metadata.xml') as metadata:
    fgdc_from_file = FgdcParser(metadata)

# Example simple properties

# :see: gis_metadata.utils.SUPPORTED_PROPS for list of all supported properties

# Complex properties

# :see: gis_metadata.utils.COMPLEX_DEFINITIONS for structure of all complex properties

# Update properties
fgdc_from_file.title = 'New Title'
fgdc_from_file.dates = {'type': 'single' 'values': '1/1/2016'}

# Apply updates
fgdc_from_file.validate()                                      # Ensure updated properties are valid
fgdc_from_file.serialize()                                     # Output updated XML as a string
fgdc_from_file.write()                                         # Output updated XML to existing file
fgdc_from_file.write(out_file_or_path='/path/to/updated.xml')  # Output updated XML to new file

Extending and Customizing


There are a few unwritten (until now) rules about the way the metadata parsers are wired to work:

  1. Properties are generally defined by XPATH in each parser._data_map
  2. Simple parser properties accept only values of string and list's of string's
  3. XPATH's configured in the data map support references to element attributes: 'path/to/element/@attr'
  4. Complex parser properties are defined by custom parser/updater functions instead of by XPATH
  5. Complex parser properties accept values of type dict containing simple properties, or a list of said dict's
  6. XPATH keys in the data map with leading underscores are parsed, but not validated or written out
  7. XPATH keys in the data map that "shadow" other properties but with a leading underscore serve as secondary values
  8. Secondary values are used in the absence of a primary value if primary location (element or attribute) is missing
  9. Additional underscores indicate further locations to check for missing values, i.e. title, _title, __title

Some examples of existing secondary properties are as follows:

# In the ArcGIS parser for distribution contact phone:

ARCGIS_TAG_FORMATS = frozendict({
    'dist_phone': 'distInfo/distributor/distorCont/rpCntInfo/cntPhone/voiceNum',
    '_dist_phone': 'distInfo/distributor/distorCont/rpCntInfo/voiceNum',  # If not in cntPhone

# In the FGDC parser for sub-properties in the contacts definition:

FGDC_DEFINITIONS = dict({k: dict(v) for k, v in iteritems(COMPLEX_DEFINITIONS)})
    '_name': '{_name}',
    '_organization': '{_organization}'
class FgdcParser(MetadataParser):
    def _init_data_map(self):
        ct_format = FGDC_TAG_FORMATS[CONTACTS]
        fgdc_data_structures[CONTACTS] = format_xpaths(
            _name=ct_format.format(ct_path='cntorgp/cntper'),  # If not in cntperp
            _organization=ct_format.format(ct_path='cntorgp/cntorg'),  # If not in cntperp

# Also see the ISO parser for secondary and tertiary sub-properties in the attributes definition:

ISO_DEFINITIONS = dict({k: dict(v) for k, v in iteritems(COMPLEX_DEFINITIONS)})
    '_definition_source': '{_definition_src}',
    '__definition_source': '{__definition_src}',
    '___definition_source': '{___definition_src}'


Any of the supported parsers can be extended to include more of a standard's supported data. In this example we'll add two new properties to the IsoParser:

  • metadata_language: a simple string field describing the language of the metadata file itself (not the dataset)
  • metadata_contacts: a complex structure with contact info leveraging and enhancing the existing contact structure

This example will cover:

  1. Adding a new simple property
  2. Configuring a secondary location for a property value
  3. Referencing an element attribute in an XPATH
  4. Adding a new complex property
  5. Customizing the complex property to include a new sub-property

Also, this example is specifically covered by unit tests.

from gis_metadata.iso_metadata_parser import IsoParser
from gis_metadata.utils import COMPLEX_DEFINITIONS, CONTACTS, format_xpaths, ParserProperty

class CustomIsoParser(IsoParser):

    def _init_data_map(self):
        super(CustomIsoParser, self)._init_data_map()

        # 1. Basic property: text or list (with secondary location referencing `codeListValue` attribute)

        lang_prop = 'metadata_language'
        self._data_map[lang_prop] = 'language/CharacterString'                    # Parse from here if present
        self._data_map['_' + lang_prop] = 'language/LanguageCode/@codeListValue'  # Otherwise, try from here

        # 2. Complex structure (reuse of contacts structure plus phone)

        # 2.1 Define some basic variables
        ct_prop = 'metadata_contacts'
        ct_xpath = 'contact/CI_ResponsibleParty/{ct_path}'
        ct_defintion = COMPLEX_DEFINITIONS[CONTACTS]
        ct_defintion['phone'] = '{phone}'

        # 2.2 Reuse CONTACT structure to specify locations per prop (adapted from parent to add `phone`)
        self._data_structures[ct_prop] = format_xpaths(

        # 2.3 Set the contact root to insert new elements at "contact" level given the defined path:
        #   'contact/CI_ResponsibleParty/...'
        # By default we would get multiple "CI_ResponsibleParty" elements under a single "contact"
        # This way we get multiple "contact" elements, each with its own single "CI_ResponsibleParty"
        self._data_map['_{prop}_root'.format(prop=ct_prop)] = 'contact'

        # 2.4 Leverage the default methods for parsing complex properties (or write your own parser/updater)
        self._data_map[ct_prop] = ParserProperty(self._parse_complex_list, self._update_complex_list)

        # 3. And finally, let the parent validation logic know about the two new custom properties


with open(r'/path/to/metadata.xml') as metadata:
    iso_from_file = CustomIsoParser(metadata)


Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gis-metadata-parser-2.0.1.tar.gz (52.4 kB view hashes)

Uploaded source

Built Distribution

gis_metadata_parser-2.0.1-py3-none-any.whl (57.6 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page