Minimum dissipation approximation: A fast algorithm for the prediction of diffusive properties of intrinsically disordered proteins
Project description
glm_mda_diffusion
or Globule-Linker-Model, Minimum-Dissipation-Approximation diffusion coefficient calculator
Minimum dissipation approximation is a fast algorithm for predicting the diffusive properties of intrinsically disordered proteins.
Installation
python3 -m pip install glm_mda_diffusion
Usage as module
Basic usage:
python3 -m glm_mda_diffusion --sequence MGSS[HHHHHH]SSGLVPR
Sample output:
Computed GLM-MDA hydrodynamic radius [Ang]:
12.279165209438174
Usage as package
Basic usage
import glm_mda_diffusion
glm_mda_diffusion.hydrodynamic_radius(sequence = "MGSS[HHHHHH]SSGLVPR")
Advanced usage (all options displayed with default values).
Options steric_radius and hydrodynamic_radius controll linker properties, while effective_density and hydrdation_thickness controll globular region properties.
import glm_mda_diffusion
glm_mda_diffusion.protein_hydrodynamic_radius(
sequence="MGSS[HHHHHH]SSGLVPR",
steric_radius=1.9025, # Ang
hydrodynamic_radius=4.2, # Ang
effective_density=0.52, # Da / Ang^3
hydration_thickness=3.0, # Ang
ensemble_size=30,
bootstrap_rounds=10,
aminoacid_masses={
"A": 71.08,
"C": 103.14,
"D": 115.09,
"E": 129.12,
"F": 147.18,
"G": 57.06,
"H": 137.15,
"I": 113.17,
"K": 128.18,
"L": 113.17,
"M": 131.21,
"N": 114.11,
"P": 97.12,
"Q": 128.41,
"R": 156.2,
"S": 87.08,
"T": 101.11,
"V": 99.14,
"W": 186.21,
"Y": 163.18,
"Z": 0,
"O": 0,
"U": 0,
"J": 0,
"X": 0,
"B": 0,
}, # Da,
)
License
This software is licensed under GPLv3 License
Copyright (c) Radost Waszkiewicz (2023).
How to cite
Minimum dissipation approximation: A fast algorithm for the prediction of diffusive properties of intrinsically disordered proteins. Radost Waszkiewicz, Agnieszka Michaś, Michał K. Białobrzewski, Barbara P. Klepka, Maja K. Cieplak-Rotowska, Zuzanna Staszałek, Bogdan Cichocki, Maciej Lisicki, Piotr Szymczak, and Anna Niedźwiecka; J. Phys. Chem. Lett. (submitted 2023)
Bibliography
-
Diffusion coefficients of elastic macromolecules. B. Cichocki, M. Rubin, A. Niedzwiecka, and P. Szymczak; J. Fluid Mech. (2019)
-
GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules. P. Zuk, B. Cichocki, and P. Szymczak; Biophysical Journal (2018)
-
Pychastic: Precise Brownian dynamics using Taylor-Ito integrators in Python. R. Waszkiewicz, M. Bartczak, K. Kolasa, and M. Lisicki; SciPost Phys. Codebases (2023)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file glm_mda_diffusion-1.1.tar.gz.
File metadata
- Download URL: glm_mda_diffusion-1.1.tar.gz
- Upload date:
- Size: 17.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d283b967256aec6fb3f9f5a6ff2eae72fc09e0089a7ef2f357c20d7c8a832f3d
|
|
| MD5 |
466ed951d2a91b34496e20f6d09f5967
|
|
| BLAKE2b-256 |
b55603a3f16d34e92dedbb5044ff592cfb95e79454b759e86a3e8b3d95e64f64
|
File details
Details for the file glm_mda_diffusion-1.1-py3-none-any.whl.
File metadata
- Download URL: glm_mda_diffusion-1.1-py3-none-any.whl
- Upload date:
- Size: 18.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d7b9b485bee17f7065b240015b8a81bba3cc0281fe052bba6b5a9a098f89df71
|
|
| MD5 |
ee46d35629cb562dd208e67e2cdcdba4
|
|
| BLAKE2b-256 |
c154922115dfe270c4b74c8514e74000b159386754be2d8c9cfc2bad1703d070
|