Skip to main content

Minimum dissipation approximation: A fast algorithm for the prediction of diffusive properties of intrinsically disordered proteins

Project description

glm_mda_diffusion

or Globule-Linker-Model, Minimum-Dissipation-Approximation diffusion coefficient calculator

Banner

Minimum dissipation approximation is a fast algorithm for predicting the diffusive properties of intrinsically disordered proteins.

Installation

python3 -m pip install glm_mda_diffusion

Usage as module

Basic usage:

python3 -m glm_mda_diffusion --sequence MGSS[HHHHHH]SSGLVPR

Sample output:

Computed GLM-MDA hydrodynamic radius [Ang]:
12.279165209438174

Usage as package

Basic usage

import glm_mda_diffusion
glm_mda_diffusion.hydrodynamic_radius(sequence = "MGSS[HHHHHH]SSGLVPR")

Advanced usage (all options displayed with default values).

Options steric_radius and hydrodynamic_radius controll linker properties, while effective_density and hydrdation_thickness controll globular region properties.

import glm_mda_diffusion

glm_mda_diffusion.protein_hydrodynamic_radius(
    sequence="MGSS[HHHHHH]SSGLVPR",
    steric_radius=1.9025,  # Ang
    hydrodynamic_radius=4.2,  # Ang
    effective_density=0.52,  # Da / Ang^3
    hydration_thickness=3.0,  # Ang
    ensemble_size=30,
    bootstrap_rounds=10,
    aminoacid_masses={
        "A": 71.08,
        "C": 103.14,
        "D": 115.09,
        "E": 129.12,
        "F": 147.18,
        "G": 57.06,
        "H": 137.15,
        "I": 113.17,
        "K": 128.18,
        "L": 113.17,
        "M": 131.21,
        "N": 114.11,
        "P": 97.12,
        "Q": 128.41,
        "R": 156.2,
        "S": 87.08,
        "T": 101.11,
        "V": 99.14,
        "W": 186.21,
        "Y": 163.18,
        "Z": 0,
        "O": 0,
        "U": 0,
        "J": 0,
        "X": 0,
        "B": 0,
    },  # Da,
)

License

This software is licensed under GPLv3 License

Copyright (c) Radost Waszkiewicz (2023).

How to cite

Minimum dissipation approximation: A fast algorithm for the prediction of diffusive properties of intrinsically disordered proteins. Radost Waszkiewicz, Agnieszka Michaś, Michał K. Białobrzewski, Barbara P. Klepka, Maja K. Cieplak-Rotowska, Zuzanna Staszałek, Bogdan Cichocki, Maciej Lisicki, Piotr Szymczak, and Anna Niedźwiecka; J. Phys. Chem. Lett. (submitted 2023)

Bibliography

  • Diffusion coefficients of elastic macromolecules. B. Cichocki, M. Rubin, A. Niedzwiecka, and P. Szymczak; J. Fluid Mech. (2019)

  • GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules. P. Zuk, B. Cichocki, and P. Szymczak; Biophysical Journal (2018)

  • Pychastic: Precise Brownian dynamics using Taylor-Ito integrators in Python. R. Waszkiewicz, M. Bartczak, K. Kolasa, and M. Lisicki; SciPost Phys. Codebases (2023)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

glm_mda_diffusion-1.1.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

glm_mda_diffusion-1.1-py3-none-any.whl (18.2 kB view details)

Uploaded Python 3

File details

Details for the file glm_mda_diffusion-1.1.tar.gz.

File metadata

  • Download URL: glm_mda_diffusion-1.1.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for glm_mda_diffusion-1.1.tar.gz
Algorithm Hash digest
SHA256 d283b967256aec6fb3f9f5a6ff2eae72fc09e0089a7ef2f357c20d7c8a832f3d
MD5 466ed951d2a91b34496e20f6d09f5967
BLAKE2b-256 b55603a3f16d34e92dedbb5044ff592cfb95e79454b759e86a3e8b3d95e64f64

See more details on using hashes here.

File details

Details for the file glm_mda_diffusion-1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for glm_mda_diffusion-1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d7b9b485bee17f7065b240015b8a81bba3cc0281fe052bba6b5a9a098f89df71
MD5 ee46d35629cb562dd208e67e2cdcdba4
BLAKE2b-256 c154922115dfe270c4b74c8514e74000b159386754be2d8c9cfc2bad1703d070

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page