Skip to main content
Help us improve PyPI by participating in user testing. All experience levels needed!

Python wrapper for glmnet

Project description

Python GLMNET
=============

>glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models.

This is a Python wrapper for the fortran library used in the R package
[`glmnet`](http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html).
While the library includes linear, logistic, Cox, Poisson, and multiple-response
Gaussian, only linear and logistic are implemented in this package.

The API follows the conventions of [Scikit-Learn](http://scikit-learn.org/stable/),
so it is expected to work with tools from that ecosystem.

Installation
------------
`glmnet` depends on numpy, scikit-learn and scipy. A working Fortran compiler
is also required to build the package, for Mac users, `brew install gcc` will
take care of this requirement.

```bash
git clone git@github.com:civisanalytics/python-glmnet.git
cd python-glmnet
python setup.py install
```

Usage
-----

### General

By default, `LogitNet` and `ElasticNet` fit a series of models using the lasso
penalty (α = 1) and up to 100 values for λ (determined by the algorithm). In
addition, after computing the path of λ values, performance metrics for each
value of λ are computed using 3-fold cross validation. The value of λ
corresponding to the best performing model is saved as the `lambda_max_`
attribute and the largest value of λ such that the model performance is within
`cut_point * standard_error` of the best scoring model is saved as the
`lambda_best_` attribute.

The `predict` and `predict_proba` methods accept an optional parameter `lamb`
which is used to select which model(s) will be used to make predictions. If
`lamb` is omitted, `lambda_best_` is used.

Both models will accept dense or sparse arrays.

### Regularized Logistic Regression

```python
from glmnet import LogitNet

m = LogitNet()
m = m.fit(x, y)
```

Prediction is similar to Scikit-Learn:
```python
# predict labels
p = m.predict(x)
# or probability estimates
p = m.predict_proba(x)
```

### Regularized Linear Regression

```python
from glmnet import ElasticNet

m = ElasticNet()
m = m.fit(x, y)
```

Predict:
```python
p = m.predict(x)
```

Project details


Release history Release notifications

This version
History Node

2.0.0

History Node

1.0.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
glmnet-2.0.0.tar.gz (102.6 kB) Copy SHA256 hash SHA256 Source None Mar 3, 2017

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page