Skip to main content

Reusable utilities for working with Glue PySpark jobs

Project description

glue-utils

PyPI - Version PyPI - Downloads License

Continuous Integration CodeQL Dependabot Updates

Lines of Code Quality Gate Status Coverage Reliability Rating Security Rating Maintainability Rating

glue-utils is a Python library designed to enhance the developer experience when working with AWS Glue ETL and Python Shell jobs. It reduces boilerplate code, increases type safety, and improves IDE auto-completion, making Glue development easier and more efficient.

image

Usage in AWS Glue

To use glue-utils in AWS Glue, it needs to be added as an additional python module in your Glue job.

You can do this by adding an --additional-python-modules job parameter with the value, glue_utils==0.12.0. For more information about setting job parameters, see AWS Glue job parameters.

Usage when developing jobs locally

This library does not include pyspark and aws-glue-libs as dependencies as they are already pre-installed in Glue's runtime environment.

To help in developing your Glue jobs locally in your IDE, it is helpful to install pyspark and aws-glue-libs. Unfortunately, aws-glue-libs is not available through PyPI so we can only install it from its git repository.

# Glue 5.0 uses PySpark 3.5.4
pip install pyspark==3.5.4
pip install git+https://github.com/awslabs/aws-glue-libs.git@master
pip install glue-utils

Main Features

  • BaseOptions
    • a dataclass that parses the options supplied via command-line arguments
  • GluePySparkContext
    • a subclass of awsglue.context.GlueContext that adds convenient type-safe methods (methods that ensure the correct data types are used) for the most common connection types.
  • GluePySparkJob
    • a convenient class that simplifies and reduces the boilerplate code needed in Glue jobs.

BaseOptions

BaseOptions resolves the required arguments into a dataclass to help your IDE auto-complete and detect potential KeyErrors. It also makes type checkers such as pyright and mypy detect those errors at design or build time instead of at runtime.

from dataclasses import dataclass
from glue_utils import BaseOptions


@dataclass
class Options(BaseOptions):
    start_date: str
    end_date: str


args = Options.from_sys_argv()

print(f"The day partition key is: {args.start_date}")

Note: Similar to the behavior of awsglue.utils.getResolvedOptions, all arguments are strings. A warning is raised when defining a field as other data types. We aim to auto-cast those values in the future.

GluePySparkContext

GluePySparkContext is a subclass of awsglue.context.GlueContext with the following additional convenience methods for creating and writing DynamicFrames for the common connection types. The method signatures ensure that you are passing the right connection options and/or format options for the chosen connection type.

  • MySQL
    • create_dynamic_frame_from_mysql
    • write_dynamic_frame_to_mysql
  • Oracle
    • create_dynamic_frame_from_oracle
    • write_dynamic_frame_to_oracle
  • PostgreSQL
    • create_dynamic_frame_from_postgresql
    • write_dynamic_frame_to_postgresql
  • SQL Server
    • create_dynamic_frame_from_sqlserver
    • write_dynamic_frame_to_sqlserver
  • S3
    • JSON
      • create_dynamic_frame_from_s3_json
      • write_dynamic_frame_to_s3_json
    • CSV
      • create_dynamic_frame_from_s3_csv
      • write_dynamic_frame_to_s3_csv
    • Parquet
      • create_dynamic_frame_from_s3_parquet
      • write_dynamic_frame_to_s3_parquet
    • XML
      • create_dynamic_frame_from_s3_xml
      • write_dynamic_frame_to_s3_xml
  • DynamoDB
    • create_dynamic_frame_from_dynamodb
    • create_dynamic_frame_from_dynamodb_export
    • write_dynamic_frame_to_dynamodb
  • Kinesis
    • create_dynamic_frame_from_kinesis
    • write_dynamic_frame_to_kinesis
  • Kafka
    • create_dynamic_frame_from_kafka
    • write_dynamic_frame_to_kafka
  • OpenSearch
    • create_dynamic_frame_from_opensearch
    • write_dynamic_frame_to_opensearch
  • DocumentDB
    • create_dynamic_frame_from_documentdb
    • write_dynamic_frame_to_documentdb
  • MongoDB
    • create_dynamic_frame_from_mongodb
    • write_dynamic_frame_to_mongodb

GluePySparkJob

GluePySparkJob reduces the boilerplate code needed by using reasonable defaults while still allowing for customizations by passing keyword arguments.

In its simplest form, it takes care of instantiating awsglue.context.GlueContext and initializing awsglue.job.Job.

from glue_utils.pyspark import GluePySparkJob

# Instantiate with defaults.
job = GluePySparkJob()

# This is the SparkContext object.
sc = job.sc

# This is the GluePySparkContext(GlueContext) object.
glue_context = job.glue_context

# This is the SparkSession object.
spark = job.spark

# The rest of your job's logic.

# Commit the job if necessary (e.g. when using bookmarks).
job.commit()

options_cls

You may pass a subclass of BaseOptions to make the resolved options available in job.options.

from dataclasses import dataclass
from glue_utils import BaseOptions
from glue_utils.pyspark import GluePySparkJob


@dataclass
class Options(BaseOptions):
    # Specify the arguments as field names
    start_date: str
    end_date: str
    source_path: str


# Instantiate with the above Options class.
job = GluePySparkJob(options_cls=Options)

# Use the resolved values using the fields available in job.options.
print(f"The S3 path is {job.options.source_path}")

log_level

You may configure the logging level. It is set to GluePySparkJob.LogLevel.WARN by default.

from glue_utils.pyspark import GluePySparkJob


# Log only errors.
job = GluePySparkJob(log_level=GluePySparkJob.LogLevel.ERROR)

spark_conf

You may set Spark configuration values by instantiating a custom pyspark.SparkConf object to pass to GluePySparkJob.

from pyspark import SparkConf
from glue_utils.pyspark import GluePySparkJob

# Instantiate a SparkConf and set the desired config keys/values.
spark_conf = SparkConf()
spark_conf.set("spark.driver.maxResultSize", "4g")

# Instantiate with the above custom SparkConf.
job = GluePySparkJob(spark_conf=spark_conf)

glue_context_options

You may set options that are passed to awsglue.context.GlueContext.

from glue_utils.pyspark import GlueContextOptions, GluePySparkJob

job = GluePySparkJob(glue_context_options={
    "minPartitions": 2,
    "targetPartitions": 10,
})

# Alternatively, you can use the GlueContextOptions TypedDict.
job = GluePySparkJob(glue_context_options=GlueContextOptions(
    minPartitions=2,
    targetPartitions=10,
)

Other features

The following modules contain useful TypedDicts for defining connection options or format options to pass as arguments to various awsglue.context.GlueContext methods:

  • glue_utils.pyspark.connection_options
    • for defining connection_options for various connection types
  • glue_utils.pyspark.format_options
    • for defining format_options for various formats

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

glue_utils-0.12.0.tar.gz (23.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

glue_utils-0.12.0-py3-none-any.whl (22.8 kB view details)

Uploaded Python 3

File details

Details for the file glue_utils-0.12.0.tar.gz.

File metadata

  • Download URL: glue_utils-0.12.0.tar.gz
  • Upload date:
  • Size: 23.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.8.2

File hashes

Hashes for glue_utils-0.12.0.tar.gz
Algorithm Hash digest
SHA256 008ba31422adbe893d3eb84a62fe8fc74852c2815827d86b261378ce990ae1e2
MD5 8c6ccec050bfd3eaa8f38350131b1eef
BLAKE2b-256 0f9bcf6d24d5b5953184571d4e51fac3f0825fd1faeaeff1fe4e2ebd86e3ca15

See more details on using hashes here.

File details

Details for the file glue_utils-0.12.0-py3-none-any.whl.

File metadata

File hashes

Hashes for glue_utils-0.12.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b61c99397519627506c13dcff04e67ac1190e8825d3304884f32b693419c0d90
MD5 8cf5b3b125b1ae64b7d6b6bfce7d7852
BLAKE2b-256 7e9535bf5c6fdd5e30636e3487a2a74b313b78bedf28d8dbbb658650e6b11c4e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page