Skip to main content

GlycoGenius is an all-in-one solution for data analysis of glycomics data.

Project description

GlycoGenius - The Ultimate Glycomics Data Analysis Tool

GlycoGenius is an open-source program offering an automated workflow for glycomics data analysis, featuring an intuitive graphical interface.

Current software tools are effective in certain aspects of glycomics data analysis but all require significant effort to reach satisfactory qualitative results, often requiring months of manual data curation, revision and integration.

With that in mind, GlycoGenius is tailored to reduce manual workload. It allows for data visualization (using the GUI) and automatically constructs search spaces, identifies, scores, and quantifies glycans, filters results, and annotates fragment spectra of N- and O-glycans, glycosaminoglycans and more.

Installation

There are two ways to install it:

  1. Download the latest version of the Graphical User Interface from Releases page on https://github.com/LoponteHF/GlycoGenius_GUI, unzip it and run the executable file (Windows only, for other OS, you can install the GUI from PyPI);
  2. Install from PyPI:
    1. Install Python from python.org or from your OS package distributor;
    2. Type "pip install glycogenius" on a terminal.

Usage

  1. Export your MS data to an MzXML or MzML file;
  2. Type 'glycogenius' in the terminal;
		glycogenius
  1. Follow instructions:
    • You can analyze directly on the CLI;
    • You can export a parameters file for advanced executions;
  2. If you exported the parameters file, pipeline it to glycogenius after setting it up.
    • eg. in terminal type:
        cat .\glycogenius_parameters.ini | glycogenius

For detailed information on the different settings, access the Instructions Manual. It will be updated periodically, but less often than the program itself, so some features may be missing in it.

Features Development and Suggestions

If you want to suggest a new feature or be aware of what's intended down the road for GlycoGenius, feel free to check our Trello dashboard.

Citation

GlycoGenius: the ultimate high-throughput glycan composition identification tool Hector F. Loponte, Jing Zheng, Yajie Ding, Isadora A. Oliveira, Kristoffer Basse, Adriane R. Todeschini, Peter L. Horvatovich, Guinevere S.M. Lageveen-Kammeijer bioRxiv 2025.03.10.642485; doi: https://doi.org/10.1101/2025.03.10.642485

Credits

Pyteomics:

Goloborodko, A.A.; Levitsky, L.I.; Ivanov, M.V.; and Gorshkov, M.V. (2013) “Pyteomics - a Python Framework for Exploratory Data Analysis and Rapid Software Prototyping in Proteomics”, Journal of The American Society for Mass Spectrometry, 24(2), 301–304. DOI: 10.1007/s13361-012-0516-6

Levitsky, L.I.; Klein, J.; Ivanov, M.V.; and Gorshkov, M.V. (2018) “Pyteomics 4.0: five years of development of a Python proteomics framework”, Journal of Proteome Research. DOI: 10.1021/acs.jproteome.8b00717

Dill for Python:

M.M. McKerns, L. Strand, T. Sullivan, A. Fang, M.A.G. Aivazis, "Building a framework for predictive science", Proceedings of the 10th Python in Science Conference, 2011; http://arxiv.org/pdf/1202.1056

Michael McKerns and Michael Aivazis, "pathos: a framework for heterogeneous computing", 2010- ; https://uqfoundation.github.io/project/pathos

Numpy:

Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2.

SciPy:

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272.

Whittaker-Eilers smoothing implementation:

P. H. C. Eilers, "A perfect smoother", Anal. Chem. 2003, 75, 3631-3636

J. Midelet, A. H. El-Sagheer, T. Brown, A. G. Kanaras, A. Débarre, M. H. V. Werts, "Spectroscopic and Hydrodynamic Characterisation of DNA-Linked Gold Nanoparticle Dimers in Solution using Two-Photon Photoluminescence", ChemPhysChem 2018, 19, 827.

Pandas:

The pandas development team, Pandas, Zenoddo, Feb 2020, DOI:10.5281/zenodo.3509134

Logo/Banner Image:

Based on an image generated by Bing Copilot (powered by DALL-E 3)

License

This project is licensed under GNU GPLv3 or later

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

glycogenius-1.2.14.tar.gz (114.5 kB view details)

Uploaded Source

File details

Details for the file glycogenius-1.2.14.tar.gz.

File metadata

  • Download URL: glycogenius-1.2.14.tar.gz
  • Upload date:
  • Size: 114.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.13.0

File hashes

Hashes for glycogenius-1.2.14.tar.gz
Algorithm Hash digest
SHA256 c3fd1325b5216746983410ac4685e1929b357faee94dde909e14d8c6ba364b1f
MD5 ad8ab96f395d4ca62d505a03d126b77a
BLAKE2b-256 e95138640723a4185c28906388cd5f35e83f051e0f62e11549b5faa273bcfd42

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page