Generative Manifold Networks
Project description
Generative Manifold Networks (GMN)
Generative Manifold Networks is a generalization of nonlinear dynamical systems from a single state-space with a manifold operator, to an interconnected network of operators on the state-space(s) introduced by Pao et al.
GMN is developed at the Biological Nonlinear Dynamics Data Science Unit, OIST
Installation
Python Package Index (PyPI) gmn.
pip install gmn
Documentation
Usage
Example usage at the python prompt in directory gmn:
>>> import gmn
>>> G = gmn.GMN( configFile = './config/default.cfg' )
>>> G.Generate()
>>> G.DataOut.tail()
Time A B C D Out
295 996 -2.487000e-01 0.927389 -0.5018 0.383759 -0.902106
296 997 -1.874000e-01 0.973968 -0.4708 0.471114 -0.961839
297 998 -1.253000e-01 0.989932 -0.4248 0.540129 -0.989022
298 999 -6.280002e-02 0.984369 -0.3671 0.591274 -0.986631
299 1000 -2.438686e-08 0.957464 -0.3016 0.624011 -0.951023
References
Experimentally testable whole brain manifolds that recapitulate behavior
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file gmn-1.4.1.tar.gz.
File metadata
- Download URL: gmn-1.4.1.tar.gz
- Upload date:
- Size: 33.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.6
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
c8416469fb449e5874dd98b0cb021eb434d36e338a66e5d33f8bcb3e9f89383a
|
|
| MD5 |
01ae1b95ccd6dafb51fdbfed0291d57d
|
|
| BLAKE2b-256 |
6082b71f1b6cc9364e2957a485e27a865cf270adb4ffdc7e243a3921a06b28ff
|
File details
Details for the file gmn-1.4.1-py3-none-any.whl.
File metadata
- Download URL: gmn-1.4.1-py3-none-any.whl
- Upload date:
- Size: 20.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.6
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
fc0c7f415a7561a45006c9007c15e40eb7576e23d50c673a52e7002a8b1895c4
|
|
| MD5 |
1eba4e93cffb14e688ae17e6425e1995
|
|
| BLAKE2b-256 |
f029114ac4c5ec125dc9c552c779caf0da602db0519bc2d809770cfad432b31e
|