Skip to main content

gokart pipeline

Project description


gokart pipeline project


Please show or Eaxmple.ipynb

from gokart_pipeliner import GokartPipeliner
from ExampleTasks import *

# make pipeline
preprocess = [TaskA, {'task_b': TaskB, 'task_c': TaskC}, TaskD]
modeling = preprocess + [TaskE, {'task_f': TaskF}, TaskF]
predict = [{'model': modeling, 'task_a': TaskA}, TaskG]

# instantiation (setting static params)
params = {'TaskA': {'param1':0.1, 'param2': 'sample'}, 'TaskD': {'param1': 'foo'}}
config_path_list = ['./conf/param.ini']
gp = GokartPipeliner(

# run (setting dynamic params)
running_params = {'TaskB': {'param1':'bar'}}, params=running_params)

task example

class Task(gokart.TaskOnKart):
    foo = gokart.TaskInstanceParameter()

    def run(self):
        x = self.load('foo')

get task result

We can get result of latest pipeline tasks.

task_b_result =[TaskA, TaskB], return_value=True)

write requires

If you say "want to write requires" or "want to reuse existing tasks", we can use override_requires parameter.

params = {'ExistingTask': {'override_requires': False}}[ExistingTask], params=params)

for jupyter notebook

off logger[Task], params=params, verbose=False)


pip install poetry
pip install poetry-dynamic-versioning

# poetry install
poetry build
# poetry lock

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gokart_pipeliner-0.0.8.tar.gz (4.6 kB view hashes)

Uploaded source

Built Distribution

gokart_pipeliner-0.0.8-py3-none-any.whl (5.5 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page