Skip to main content

Joblib-like interface for parallel GPU computations (e.g. data preprocessing)

Project description

Build Status codecov Documentation Status PyPI version

GPUParallel

Joblib-like interface for parallel GPU computations (e.g. data preprocessing).

import torch
from gpuparallel import GPUParallel, delayed

def perform(idx, device_id, **kwargs):
    tensor = torch.Tensor([idx]).to(device_id)
    return (tensor * tensor).item()

result = GPUParallel(n_gpu=2)(delayed(perform)(idx) for idx in range(5))
print(list(result))  # result: [0.0, 1.0, 4.0, 9.0, 16.0], ordered in accordance with input parameters

Features:

Install

python3 -m pip install gpuparallel
# or
python3 -m pip install git+git://github.com/vlivashkin/gpuparallel.git

Examples

Initialize networks once on worker init

Function init_fn is called on init of every worker. All common resources (e.g. networks) can be initialized here.

from gpuparallel import GPUParallel, delayed

def init(device_id=None, **kwargs):
    global model
    model = load_model().to(device_id)

def perform(img, device_id=None, **kwargs):
    global model
    return model(img.to(device_id))
    
gp = GPUParallel(n_gpu=16, n_workers_per_gpu=2, init_fn=init)
results = gp(delayed(perform)(img) for img in fnames)

Reuse initialized workers

Once workers are initialized, they keep live until GPUParallel object exist. You can perform several queues of tasks without reinitializing worker resources:

gp = GPUParallel(n_gpu=16, n_workers_per_gpu=2, init_fn=init)
overall_results = []
for folder_images in folders:
    folder_results = gp(delayed(perform)(img) for img in folder_images)
    overall_results.extend(folder_results)
del gp  # this will close process pool to free memory

Result is a generator

GPUParallel call returns a generator to use results during caclulations (e.g. for sequential saving ordered results)

import h5py

gp = GPUParallel(n_gpu=16, n_workers_per_gpu=2, preserve_order=True)
result = gp(delayed(perform)(img) for img in images)

with h5py.File('output.h5') as f:
    result_dataset = f.create_dataset('result', shape=(300, 224, 224, 3))

    for idx, result in enumerate(result):
        result_dataset[idx] = result

Auto batching

Use class BatchGPUParallel for auto spliting tensor to workers. flat_result flag de-batches results (works only if single array/tensor returned)

arr = np.zeros((102, 103))
bgpup = BatchGPUParallel(task_fn=task, batch_size=3, flat_result=True, n_gpu=2)
flat_results = np.array(list(bgpup(arr)))

Simple logging from workers

print() inside a worker won't be seen in the main process, but you still can use logging to stderr of the main process. Use log_to_stderr() call to init logging, and log.info(message) to log info from workers

from gpuparallel import GPUParallel, delayed, log_to_stderr, log

log_to_stderr('INFO')

def perform(idx, worker_id=None, device_id=None):
    hi = f'Hello world #{idx} from worker #{worker_id} with {device_id}!'
    log.info(hi)

GPUParallel(n_gpu=2)(delayed(perform)(idx) for idx in range(2))

It will return:

[INFO/Worker-1(cuda:1)]:Hello world #1 from worker #1 with cuda:1!
[INFO/Worker-0(cuda:0)]:Hello world #0 from worker #0 with cuda:0!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gpuparallel-0.2.2.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

gpuparallel-0.2.2-py3-none-any.whl (8.6 kB view details)

Uploaded Python 3

File details

Details for the file gpuparallel-0.2.2.tar.gz.

File metadata

  • Download URL: gpuparallel-0.2.2.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for gpuparallel-0.2.2.tar.gz
Algorithm Hash digest
SHA256 0ac9e002a37d86e3aecf4ce363dc65e0627167aabe75a143bf0000677a3243be
MD5 dc2c2cc0d43633627c695c897067177b
BLAKE2b-256 1eec22ddbe8c2049093d39b3f2d5def58a7ae47f7ac3c90af0cc5726d636714b

See more details on using hashes here.

File details

Details for the file gpuparallel-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: gpuparallel-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 8.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for gpuparallel-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 7f3266a7cfc5ff216352a2f61b105635f6a9d4f235f626478e18643a6ab990d6
MD5 28ffb259c9cce01ecba1ecf9b861cd46
BLAKE2b-256 3bc88603aa05d6be89fd4547ba881cfb7eace2be0cbd1b1fb9850cf3507a2bf7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page