Skip to main content

Gpytoolbox: A Python Geometry Processing Toolbox.

Project description

A Python Geometry Processing Toolbox

unit tests unit tests unit tests PyPI

https://gpytoolbox.org

logo

Authors: Silvia Sellán, University of Toronto and Oded Stein, Massachusetts Institute of Technology

This is a very young library of general geometry processing Python research utility functions that evolves from our personal student codebases.

Installation

Latest stable release (recommended)

You should be able install the latest release of Gpytoolbox with pip:

python -m pip install gpytoolbox

A conda installation will be supported in the future.

From Git

If you want to build Gpytoolbox from a specific git commit; for example, because you want to develop for Gpytoolbox or because you want some functionality that is in the main branch but hasn't been pushed to any release yet, you should be able to do so by cloning Gpytoolbox's github repo and running

python -m pip install numpy
python -m pip install .

Documentation

You can find documentation for all our functions in our website. You can also view the documentation for a specific function by running help(function_name) or function_name.__doc__; for example,

>>> from gpytoolbox import grad
>>> help(grad)
Finite element gradient matrix

Given a triangle mesh or a polyline, computes the finite element gradient matrix assuming piecewise linear hat function basis.

Parameters
----------
V : numpy double array
    Matrix of vertex coordinates
F : numpy int array, optional (default None)
    Matrix of triangle indices

Returns
-------
G : scipy sparse.csr_matrix
    Sparse FEM gradient matrix

See Also
--------
cotangent_laplacian.

Notes
-----

Examples
--------
TO-DO

Contribute

We hope you find our current version of our library useful. At the same time, we encourage you to ask not what Gpytoolbox can do for you, but what you can do for Gpytoolbox.

Since Gpytoolbox is a very young library, we want to make it as easy as possible for others to contribute to it and help it grow. You can contribute by adding a new function in a new file inside src/gpytoolbox/, or by adding to existing functions, and submitting a Pull Request.

We also want to make the contribution process as unintimidating as possible. We will gladly review and edit your code to make sure it acommodates to our standards and we have set up many tests that will let us know if your contribution accidentally breaks anything. If there's any functionality that is not already in this library, is remotely related to geometry processing, and you have used or used in any of your past projects, we encourage you to submit it as-is in a Pull Request. We will gladly credit you in the individual function as well as on this home page.

License

Gpytoolbox's is released under an MIT license (see details), except for files in the gpytoolbox.copyleft module, which are under a GPL one (see details). Functions in the copyleft module must be imported explicitly; this way, if you import only the main Gpytoolbox module

import gpytoolbox

or individual functions from it,

from gpytoolbox import regular_square_mesh, regular_cube_mesh

you are only bound by the terms of the permissive MIT license. However, if you import any functionality from gpytoolbox.copyleft; e.g.,

from gpytoolbox.copyleft import mesh_boolean

you will be bound by the more restrictive GPL license.

Acknowledgements

Several people have, knowingly or unknowingly, greatly contributed to this library. We are thankful to them:

  • Alec Jacobson is the author of the original Matlab gptoolbox on which we inspired ourselves to create this library. Several of our functions are line-by-line translations of his Matlab ones. Thanks, Alec!

  • Nicholas Sharp, the author of the game-changing geometry visualization library polyscope, was extremely helpful in guiding us through setting up and distributing a Python package. Thanks, Nick!

TO-DO

  • Add examples to docstrings.
  • Implement tet mesh version of linear_elasticity_stiffness.py
  • Implement tet mesh version of linear_elasticity.py
  • Improve poisson_surface_reconstruction and make it 3D.
  • Make in_element_aabb python implementation
  • Merge our squared_distance with libigl winding number and have logarithmic signed distances to mesh
  • Switch to pybind11
  • Port fracture modes code
  • Add tets to subdivide.py
  • dihedral_angles.py
  • Intrinsic Delaunay triangulation
  • Triangle-triangle distance and Hausdorff distance (with AABB)
  • Package for conda distribution
  • Add notes on every docstring mentioning libigl implementations
  • regular_square_mesh should support different resolutions in x and y direction (sensible default when n_y is None, to n_y=n_x)
  • Make all grid sizes, resolutions, etc. into tuples not necessarily numpy arrays
  • Write test_poisson_surface_reconstruction.py and debug k1 / kernel width.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gpytoolbox-0.0.3.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

gpytoolbox-0.0.3-pp38-pypy38_pp73-win_amd64.whl (5.9 MB view details)

Uploaded PyPyWindows x86-64

gpytoolbox-0.0.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

gpytoolbox-0.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (9.3 MB view details)

Uploaded PyPymacOS 10.9+ x86-64

gpytoolbox-0.0.3-pp37-pypy37_pp73-win_amd64.whl (5.9 MB view details)

Uploaded PyPyWindows x86-64

gpytoolbox-0.0.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

gpytoolbox-0.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded PyPymacOS 10.9+ x86-64

gpytoolbox-0.0.3-cp310-cp310-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.10Windows x86-64

gpytoolbox-0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

gpytoolbox-0.0.3-cp310-cp310-macosx_11_0_arm64.whl (5.7 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

gpytoolbox-0.0.3-cp310-cp310-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

gpytoolbox-0.0.3-cp39-cp39-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.9Windows x86-64

gpytoolbox-0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

gpytoolbox-0.0.3-cp39-cp39-macosx_11_0_arm64.whl (5.7 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

gpytoolbox-0.0.3-cp39-cp39-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

gpytoolbox-0.0.3-cp38-cp38-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.8Windows x86-64

gpytoolbox-0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

gpytoolbox-0.0.3-cp38-cp38-macosx_11_0_arm64.whl (5.7 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

gpytoolbox-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

gpytoolbox-0.0.3-cp37-cp37m-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.7mWindows x86-64

gpytoolbox-0.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

gpytoolbox-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

gpytoolbox-0.0.3-cp36-cp36m-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.6mWindows x86-64

gpytoolbox-0.0.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

gpytoolbox-0.0.3-cp36-cp36m-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file gpytoolbox-0.0.3.tar.gz.

File metadata

  • Download URL: gpytoolbox-0.0.3.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.15

File hashes

Hashes for gpytoolbox-0.0.3.tar.gz
Algorithm Hash digest
SHA256 a5e7e42dd3b412c202c16c9d1a841bf8eaaa3604463dd33fcd88ddf236d52de4
MD5 287add3d0b7bdb01fbffcd6f9d684100
BLAKE2b-256 48d563c5d8233583475b7f4e86c569cbf7f4d3dbbcfef74c9794a31be088f3b9

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 882002e35288cf44668c9661a0c27f64ffcb1e69c140ec08d38fa5dce33da3a2
MD5 a98a1f93218648c69b91599f1b3f3b29
BLAKE2b-256 4d72d41ba80a9f913cad4ac96949bdf9898e5b7cea699c5412b20eeefddef2c6

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f82a272433281c92e45b38429c5dac0927199e849ab941f12bf7ce7ae94a6ded
MD5 01b61919aa89f0d89e653b10d6196d94
BLAKE2b-256 e73240a73e25ee0fe6446a8c04a80559f3da3b57673bee9149fc855992abeb7f

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fa0ec1dd737169b45868fd9990cecf38e4b3bab146430457f7539c9dd4fb998d
MD5 49b9fa9c2a23ef3eaf9b0deec7a809db
BLAKE2b-256 70f56f8b52a70e92765170dfabe37adcce023f85726afcb72dc1edd64c8261d7

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 169199db80ddb1971910e98b41c880a8b7db721fa46bc5df633d5ea59ed2d767
MD5 53db10adaa0060f58cac9eda11d431a4
BLAKE2b-256 ac25ce1bea1c03bff395fe2158c56ebebb693365c64f2ad709446847b3c45a5b

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 efa813e2ad3b56efcfcf49edf28370d48a1df03c988acc9e51b931b0b25e1c5d
MD5 24b5e765cb607576cacee15edbc3b7d5
BLAKE2b-256 d9a5671474cc03c7482317301015816fa22630a3019a54c63857113057474781

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2bf63673d47a0af75e58b62bef9a73ed720da2cbff93007e507d9dff348fa0c8
MD5 185e7eebd3ed4a22f9e45a5e1499ad52
BLAKE2b-256 a0778eb8fb05197da807a9de9f0ea0fb6f4b82208590920f9305aa956ef19ffa

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gpytoolbox-0.0.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.15

File hashes

Hashes for gpytoolbox-0.0.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b33756baf4e92723344424d9c863fc93bbd52b7a65d426b4d5af843f990c92b8
MD5 1a42cb6484b49e39ee64f77045e133a1
BLAKE2b-256 4f229605526ce88483c3f0bae9bd29a9be6ba6cf8dba6a4a8c5815db53ce3a0c

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1605e6faf6e3fb2c28568c13e03ad019d32336f7961db8541a91d8e32e81600b
MD5 5db6bb3dc1013dcb1c1fe252fa36dc92
BLAKE2b-256 acaad600a4e3bce19c84515e660d3e3bb67f07a91e9fd5692066fce9af393f96

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e383525cff8dc70adbb483114aae1f6c8de835938ee1a8c0bf3d51757603cb60
MD5 730a96755174dd4a82b28c1a928da1f7
BLAKE2b-256 c65c9a1a52a5f51be118d8b5b97f1598462ac70c4d35b0ea5af7f1b240034420

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d9b4ec7b4251f80c212d04b3cf5a3a6529bc286d33cc21a30fe23ca25351ff29
MD5 727ac764a92f0d641b465f5c3f7a810f
BLAKE2b-256 314444ccc972cd5e19d5f7734317b69b68403ebb91810b211036eab2dc2b72bc

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gpytoolbox-0.0.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.15

File hashes

Hashes for gpytoolbox-0.0.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9c571c4dfb59951ae94d47b6fde19186b9f7a5b10c7cc743dbcd48c246229b30
MD5 585356ea87646a02b2919dbfbeaaa608
BLAKE2b-256 e49cd3db9ee7ed903ab83d69adc634d06b9ad45618caa203743c594340164f5d

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aab70a2a9633b648193112a23469412a78a6caef2c8db134c48b0afc91e8a5e8
MD5 3328287f4ba371a8496adf77088235a0
BLAKE2b-256 af864fc5e49a965705955a2b410882cc28272714eae4cf56e5762a40de8d43cf

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6247e8e3777013a522aae0b48861d6bac3d8cbb24cfeedbc994de6fd29277e59
MD5 8d6ac53957d71b6a5f31d04954d04acc
BLAKE2b-256 eb8a1a6d9e41e4c0bc2b9ad6d7ea5b2f019f3bbfe27d2da20bd9df7de3d06e4c

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e51407a6ed9cdb7e61bf14eae7aeb852ff63632a0d33ea0a16e28f71903ee078
MD5 b841cacc56c856cb78bdd26db8d24cbe
BLAKE2b-256 305b27cf2bca2cfbd565859d05d6e89befa0d57d4a2e720281abb4a90de9220d

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gpytoolbox-0.0.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.15

File hashes

Hashes for gpytoolbox-0.0.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 908e50b600acd0ea0865e0442a718c035c170468aa5b4b1410f72900c5c14d1d
MD5 a08fbc52e9830b1191163d8e4fd31cd0
BLAKE2b-256 30be6fff61d92a037c2c36a4c5693accbae46ce28351d4320bfb0057dafce3af

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b4137fdf818a80b8ee5c2b4f8567ff50177f5a18008aec7cc3b3c533bd3f10aa
MD5 74c355e5c95427c96501dc58a36cd54c
BLAKE2b-256 c73e25342926c6bb3893cce88fdc74aeb45bf4233bda931b1336c9ba91c5b8a4

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 56b0a8b98c9118bb5cddb13a2483600d35f4a1fe3632b7241857bc964bfb1f1f
MD5 43237983b5e0576b67c3e9b6fd50e7da
BLAKE2b-256 1ba1d3649926e5083ff3e75efe92666369d689b231f9794b50b3545f50160e75

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 163c0b28a87ee0d24027460076b226036b4a09a813c8ef4522e8f295a3a991af
MD5 0c42abc6aa99b4af6a09878650b9b19e
BLAKE2b-256 0343a74c05dd032dc05bc2ef6060728509a8a95e7bb51aab75bda623b196da18

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gpytoolbox-0.0.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.15

File hashes

Hashes for gpytoolbox-0.0.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7df45be72ab3b375b6ee14ee4a253d24fa68a7f82b7016d12fca2bc252eeda57
MD5 20a01ca2b3bd3108e082ef177aed843e
BLAKE2b-256 afbc8bbe2ee50252472597cefe462768568dfb9c0181560ba22c65c0e20f878a

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bcbfe8e0db08b33eb44c1ed5565c39e319abbd4136dff7ab348b3d506810b12e
MD5 ac5f4ce202789f9243c3fa170fba4c7a
BLAKE2b-256 dcca8a895c59d2f106771485ae0964aae686a8e14525fdea76e63565d1fc995f

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a1445d4eaa7037585cb2473227c88c499a66c4405f8736c65325148ab1a2b58a
MD5 d804a8a3708a01312cb3bdc11260136e
BLAKE2b-256 20b8a9761d3331a3463f28431cd136a13694f8180aed8179618357cf5c16e930

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: gpytoolbox-0.0.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.15

File hashes

Hashes for gpytoolbox-0.0.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f6a73c8a8fc220a2ed1fc8a183e9ecdce893687c7e0d927a98cb4159c6e608e8
MD5 4e4d5843969648b4a514fcc98817ed0d
BLAKE2b-256 4578443304e9358918835e7c0692d7cd0138ecb0427f828fb305e6b47870facd

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 672fb34c3814b0f74b940152e896c5eafc674fd95ba1f895fd05495552d59fd7
MD5 26f5bcc2f92664e2062550024467a9cc
BLAKE2b-256 0ec12705cde892bd827f1e6c8ea60ef56a13875d51c17e03f7bb0973168ea34e

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.0.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.0.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 92c4f05416a31d04338438ab2b2d4e2a4a6d045d979cdc06b23c703ec4e3d554
MD5 1cff8231d5c8536d243cf1ac21371911
BLAKE2b-256 073497c2f720a07867c1fec0e3a7c27b73fc1813bea1cbe35d3cea26fa9ac95a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page