Python package for wrapping gradient optimizers for models in Theano

Project Description
Release History
Download Files

# Gradient Optimizers

Optimize you Theano Models with [Adagrad](http://www.magicbroom.info/Papers/DuchiHaSi10.pdf), Hessian Free optimization, or linear updates.

pip3 install gradient-optimizers

See example notebook (TBD) for tutorial.

Two classes **GradientModel**, and **GradientHFModel**, for optimizing gradient

based models (specifically built with indexed parameters in mind (e.g.

for language models))

## GradientModel

A gradient model for updating your model with

hessian free, adagrad, or linear decay updates.

You will need to define the following attributes,

and fill them as appropriate:

# a forward method for getting errors:

projection = self.projection_function(ivector <indices/>)

# a cost function (that takes the result of projection function and labels as input)

# and returns a symbolic differentiable theano variable

self.cost_function(projection, ivector <label/>).sum()

self.params = []

self.indexed_params = set()

self._l2_regularization = True / False

self.store_max_updates = True / False

# set this theano setting

self.theano_mode = "FAST_RUN"

# set this theano setting

self.disconnected_inputs = 'ignore' / None

# if L2 is true store this parameter:

self._l2_regularization_parameter = theano.shared(np.float64(l2_regularization).astype(REAL), name='l2_regularization_parameter')

Upon initialization you must run:

self._select_update_mechanism(update_method_name)

# then to compile this mechanism:

self.create_update_fun()

The update methods expect the input to be of the form:

ivector <indices/>, ivector <labels/>

If this is not the case you can modify them as appropriate.

## GradientHFModel

Implements an symbolic one step of hessian-free [1]

optimization that approximates the curvature,

requires a _compute_cost method that takes an example

as input or a _compute_cost_gradients that returns

gradients for each example provided.

Model should have a params property containing symbolic

theano variables.

[[1] James Martens, ``Deep learning via Hessian-free optimization", ICML 2010](http://www.icml2010.org/papers/458.pdf)

Make sure the following parameters are not tampered with:

self._additional_params

self._num_updates

Optimize you Theano Models with [Adagrad](http://www.magicbroom.info/Papers/DuchiHaSi10.pdf), Hessian Free optimization, or linear updates.

pip3 install gradient-optimizers

See example notebook (TBD) for tutorial.

Two classes **GradientModel**, and **GradientHFModel**, for optimizing gradient

based models (specifically built with indexed parameters in mind (e.g.

for language models))

## GradientModel

A gradient model for updating your model with

hessian free, adagrad, or linear decay updates.

You will need to define the following attributes,

and fill them as appropriate:

# a forward method for getting errors:

projection = self.projection_function(ivector <indices/>)

# a cost function (that takes the result of projection function and labels as input)

# and returns a symbolic differentiable theano variable

self.cost_function(projection, ivector <label/>).sum()

self.params = []

self.indexed_params = set()

self._l2_regularization = True / False

self.store_max_updates = True / False

# set this theano setting

self.theano_mode = "FAST_RUN"

# set this theano setting

self.disconnected_inputs = 'ignore' / None

# if L2 is true store this parameter:

self._l2_regularization_parameter = theano.shared(np.float64(l2_regularization).astype(REAL), name='l2_regularization_parameter')

Upon initialization you must run:

self._select_update_mechanism(update_method_name)

# then to compile this mechanism:

self.create_update_fun()

The update methods expect the input to be of the form:

ivector <indices/>, ivector <labels/>

If this is not the case you can modify them as appropriate.

## GradientHFModel

Implements an symbolic one step of hessian-free [1]

optimization that approximates the curvature,

requires a _compute_cost method that takes an example

as input or a _compute_cost_gradients that returns

gradients for each example provided.

Model should have a params property containing symbolic

theano variables.

[[1] James Martens, ``Deep learning via Hessian-free optimization", ICML 2010](http://www.icml2010.org/papers/458.pdf)

Make sure the following parameters are not tampered with:

self._additional_params

self._num_updates

## Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help | Version | File Type | Upload Date |
---|---|---|---|

gradient-optimizers-0.0.4.tar.gz (9.2 kB) Copy SHA256 Checksum SHA256 | – | Source | Oct 30, 2014 |