Skip to main content

Python package for wrapping gradient optimizers for models in Theano

Project description

# Gradient Optimizers

Optimize you Theano Models with [Adagrad](http://www.magicbroom.info/Papers/DuchiHaSi10.pdf), Hessian Free optimization, or linear updates.


pip3 install gradient-optimizers


See example notebook (TBD) for tutorial.

Two classes **GradientModel**, and **GradientHFModel**, for optimizing gradient
based models (specifically built with indexed parameters in mind (e.g.
for language models))

## GradientModel

A gradient model for updating your model with
hessian free, adagrad, or linear decay updates.

You will need to define the following attributes,
and fill them as appropriate:

# a forward method for getting errors:
projection = self.projection_function(ivector <indices/>)

# a cost function (that takes the result of projection function and labels as input)
# and returns a symbolic differentiable theano variable
self.cost_function(projection, ivector <label/>).sum()

self.params = []
self.indexed_params = set()

self._l2_regularization = True / False

self.store_max_updates = True / False

# set this theano setting
self.theano_mode = "FAST_RUN"

# set this theano setting
self.disconnected_inputs = 'ignore' / None

# if L2 is true store this parameter:
self._l2_regularization_parameter = theano.shared(np.float64(l2_regularization).astype(REAL), name='l2_regularization_parameter')

Upon initialization you must run:

self._select_update_mechanism(update_method_name)

# then to compile this mechanism:
self.create_update_fun()

The update methods expect the input to be of the form:

ivector <indices/>, ivector <labels/>

If this is not the case you can modify them as appropriate.

## GradientHFModel

Implements an symbolic one step of hessian-free [1]
optimization that approximates the curvature,
requires a _compute_cost method that takes an example
as input or a _compute_cost_gradients that returns
gradients for each example provided.

Model should have a params property containing symbolic
theano variables.

[[1] James Martens, ``Deep learning via Hessian-free optimization", ICML 2010](http://www.icml2010.org/papers/458.pdf)

Make sure the following parameters are not tampered with:

self._additional_params

self._num_updates

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gradient-optimizers-0.0.4.tar.gz (9.2 kB view details)

Uploaded Source

File details

Details for the file gradient-optimizers-0.0.4.tar.gz.

File metadata

File hashes

Hashes for gradient-optimizers-0.0.4.tar.gz
Algorithm Hash digest
SHA256 9ccfeb3b13297ade4506c1cdb1574d1f09f63018df7046fb5c0f9450a3bf9d4f
MD5 2f09e8041063a3dfd53dd364b2418844
BLAKE2b-256 04722a6824a6af69c4fa8eb2aa2c3348625490bb58d5b18f149b28aa7a719643

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page