Gradio library for the interface of MagicQuill, an intelligent interactive image editing system
Project description
tags: [gradio-custom-component, SimpleTextbox] title: gradio_magicquill short_description: A gradio custom component colorFrom: blue colorTo: yellow sdk: gradio pinned: false app_file: space.py
gradio_magicquill
Gradio library for the interface of MagicQuill, an intelligent interactive image editing system
Installation
pip install gradio_magicquill
Usage
import gradio as gr
from gradio_magicquill import MagicQuill
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import base64
from PIL import Image, ImageOps
import io
css = """
.ms {
width: 60%;
margin: auto
}
"""
import random
import time
def read_base64_image(base64_image):
if base64_image.startswith("data:image/png;base64,"):
base64_image = base64_image.split(",")[1]
elif base64_image.startswith("data:image/jpeg;base64,"):
base64_image = base64_image.split(",")[1]
elif base64_image.startswith("data:image/webp;base64,"):
base64_image = base64_image.split(",")[1]
else:
raise ValueError("Unsupported image format.")
image_data = base64.b64decode(base64_image)
image = Image.open(io.BytesIO(image_data))
image = ImageOps.exif_transpose(image)
return image
def generate_image(x, base_model_version, negative_prompt, dtype, stroke_as_edge, grow_size, edge_strength, color_strength, palette_resolution, inpaint_strength, seed, steps, cfg, sampler_name, scheduler):
print(x['from_backend']['prompt'])
time.sleep(0.5)
color_img = read_base64_image(x['from_frontend']['add_color_image'])
color_img.save("color_img.png")
return x
with gr.Blocks(title="MagicQuill",css=css) as demo:
with gr.Row():
ms = MagicQuill()
with gr.Row():
with gr.Column():
btn = gr.Button("Run", variant="primary")
with gr.Column():
with gr.Accordion("parameters"):
base_model_version = gr.Radio(
label="Base Model Version",
choices=['SD1.5'],
value='SD1.5',
interactive=True
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="",
interactive=True
)
dtype = gr.Radio(
label="Data Type",
choices=['float16', 'bfloat16', 'float32', 'float64'],
value='float16',
interactive=True
)
stroke_as_edge = gr.Radio(
label="Stroke as Edge",
choices=['enable', 'disable'],
value='enable',
interactive=True
)
grow_size = gr.Slider(
label="Grow Size",
minimum=0,
maximum=100,
value=15,
step=1,
interactive=True
)
edge_strength = gr.Slider(
label="Edge Strength",
minimum=0.0,
maximum=5.0,
value=0.8,
step=0.01,
interactive=True
)
color_strength = gr.Slider(
label="Color Strength",
minimum=0.0,
maximum=5.0,
value=0.5,
step=0.01,
interactive=True
)
palette_resolution = gr.Slider(
label="Palette Resolution",
minimum=128,
maximum=2048,
value=2048,
step=16,
interactive=True
)
inpaint_strength = gr.Slider(
label="Inpaint Strength",
minimum=0.0,
maximum=5.0,
value=1.0,
step=0.01,
interactive=True
)
seed = gr.Number(
label="Seed",
value=0,
precision=0,
interactive=True
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50,
value=20,
interactive=True
)
cfg = gr.Slider(
label="CFG",
minimum=0.0,
maximum=100.0,
value=4.0,
step=0.1,
interactive=True
)
sampler_name = gr.Dropdown(
label="Sampler Name",
choices=["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "ddim", "uni_pc", "uni_pc_bh2"],
value='euler_ancestral',
interactive=True
)
scheduler = gr.Dropdown(
label="Scheduler",
choices=["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"],
value='exponential',
interactive=True
)
btn.click(generate_image, inputs=[ms, base_model_version, negative_prompt, dtype, stroke_as_edge, grow_size, edge_strength, color_strength, palette_resolution, inpaint_strength, seed, steps, cfg, sampler_name, scheduler], outputs=ms)
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=['*'],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def get_root_url(
request: Request, route_path: str, root_path: str | None
):
print(root_path)
return root_path
import gradio.route_utils
gr.route_utils.get_root_url = get_root_url
gr.mount_gradio_app(app, demo, path="/demo", root_path="/demo")
@app.post("/magic_quill/guess_prompt")
async def guess_prompt(request: Request):
data = await request.json()
return "mock prompt"
if __name__ == "__main__":
# uvicorn.run(app, port=8000)
demo.launch()
MagicQuill
Initialization
name | type | default | description |
---|---|---|---|
value |
typing.Union[str, typing.Callable, NoneType][
str, Callable, None
]
|
None |
None |
theme |
str | None
|
None |
None |
url |
str | None
|
None |
None |
visible |
bool
|
True |
None |
render |
bool
|
True |
None |
User function
The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).
- When used as an Input, the component only impacts the input signature of the user function.
- When used as an output, the component only impacts the return signature of the user function.
The code snippet below is accurate in cases where the component is used as both an input and an output.
- As output: Is passed, passes text value as a {str} into the function.
- As input: Should return, expects a {str} returned from function and sets textarea value to it.
def predict(
value: str | None
) -> str | None:
return value
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
gradio_magicquill-0.0.1.tar.gz
(475.9 kB
view details)
Built Distribution
File details
Details for the file gradio_magicquill-0.0.1.tar.gz
.
File metadata
- Download URL: gradio_magicquill-0.0.1.tar.gz
- Upload date:
- Size: 475.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
4b13a92731d3141802060ed810d20821f1848ba0d7cf45a6a68d557f6c832861
|
|
MD5 |
2d0f436e44a4783650ac3053b44f3915
|
|
BLAKE2b-256 |
b243c990365287fdd4ac604838952d7d083b8710507d553ba25a102a33471d34
|
File details
Details for the file gradio_magicquill-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: gradio_magicquill-0.0.1-py3-none-any.whl
- Upload date:
- Size: 235.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f3a055a849d01751a913fedae5c7182b9c639eb7726c3398402269a3adaa2d06
|
|
MD5 |
772aa9181067082b6004903b6e05cadd
|
|
BLAKE2b-256 |
b606fdf85cbd25fc7ff897fd94cf52ad83c807c081bce8b6e5c2e6eb7684ea06
|