Skip to main content

Grey theory, implemented by python.

Project description

About

Grey Theory System that means uncertain relationships between the various factors within the system, this system in which part of information is known and another part is unknown. This theory has 3 methods are : GM0N, GM1N, GM11.

Grey Relational Analysis
灰色系統理論
灰色關聯分析
灰色預測法
《Grey system theory-based models in time series prediction》2009.
改良式 GM(1,1)灰預測模型於台電電量需求預測之研究

How To Get Started

Import

from grey_theory import GreyTheory
grey = GreyTheory()

GM0N

gm0n = grey.gm0n

gm0n.add_outputs([1., 1., 1., 1., 1., 1.], "x1")
gm0n.add_patterns([.75, 1.22, .2, 1., 1., 1.], "x2")
gm0n.add_patterns([.5, 1., .7, .66, 1., .5], "x3")
gm0n.add_patterns([1., 1.09, .4, .33, .66, .25], "x4")
gm0n.add_patterns([.25, .99, 1., .66, .33, .25], "x5")

gm0n.analyze()

# Looks GM0N the results as below:
gm0n.print_analyzed_results()
"""
Pattern key: 'x3', grey value: 0.745169986457907, ranking: 1
Pattern key: 'x4', grey value: 0.5714064714568454, ranking: 2
Pattern key: 'x2', grey value: 0.501334367966725, ranking: 3
Pattern key: 'x5', grey value: 0.49555636151070015, ranking: 4
"""

gm0n.print_influence_degrees()
"""
The keys of parameters their influence degrees (ordering): 'x3 > x4 > x2 > x5'
"""

GM1N

gm1n = grey.gm1n

gm1n.add_outputs([2., 11., 1.5, 2., 2.2, 3.], "x1")
gm1n.add_patterns([3., 13.5, 1., 3., 3., 4.], "x2")
gm1n.add_patterns([2., 11., 3.5, 2., 3., 2.], "x3")
gm1n.add_patterns([4., 12., 2., 1., 2., 1.], "x4")
gm1n.add_patterns([1., 10., 5., 2., 1., 1.], "x5")

gm1n.analyze()

# Looks GM1N the results as below:
gm1n.print_analyzed_results()
"""
Pattern key: 'x1', grey value: 1.4385641363407546, ranking: 0
Pattern key: 'x2', grey value: 1.3300049398977922, ranking: 1
Pattern key: 'x4', grey value: 0.6084241725675539, ranking: 2
Pattern key: 'x3', grey value: 0.5977013008400084, ranking: 3
Pattern key: 'x5', grey value: 0.19277457599259723, ranking: 4
"""

gm1n.print_influence_degrees()
"""
The keys of parameters their influence degrees (ordering): 'x2 > x4 > x3 > x5'
"""

GM11

gm11 = grey.gm11

gm11.add_pattern(223.3, "a1")
gm11.add_pattern(227.3, "a2")
gm11.add_pattern(230.5, "a3")
gm11.add_pattern(238.1, "a4")
gm11.add_pattern(242.9, "a5")
gm11.add_pattern(251.1, "a6")

gm11.forecast(2) # Default is 1, the parameter means how many next moments need to forcast continually.

# Looks GM11 the results for example as below:
gm11.print_forecasted_results()
"""
K = 1
From original value 227.3 to forecasted value is 226.08736263692822
The error rate is 0.005334964201811667
K = 2
From original value 230.5 to forecasted value is 231.87637984134398
The error rate is 0.005971279138151739
K = 3
From original value 238.1 to forecasted value is 237.81362611881437
The error rate is 0.0012027462460547044
K = 4
From original value 242.9 to forecasted value is 243.9028969077225
The error rate is 0.00412884688234865
K = 5
From original value 251.1 to forecasted value is 250.14808482949547
The error rate is 0.003790980368397134
K = 6
Forcated next moment value is 256.55318217699795
K = 7
Forcated next moment value is 263.1222834666411
Forcated next moment value is 283.85614494317775
The average error rate 0.0040857633673527785
"""

GM11 Convolutional Forecasting

# Convolutional forecasting of GM11, forecast_convolution(stride, length)
gm11.forecast_convolution(1, 4) 

# To record last forecasted result.
last_forecasted_results = gm11.forecasted_outputs

# To clean all forecasted results. 
gm11.clean_forecasted()

# In next iteration of forecasting, we wanna continue use last forecasted results to do next forecasting, 
# but if we removed gm11.forecasted_outputs list before,  
# we can use continue_forecasting() to extend / recall the last forecasted result come back to be convolutional features. 
gm11.continue_forecasting(last_forecasted_results)

Alpha for Z

# For example, if you wanna customize alpha value to reduce error-rate of prediction before calculate AGO, 
# Directly try to setup the alpha value before start .analyze() and .forecast().
gm11.alpha = 0.8
gm11.add_pattern() 
gm11.forecast()

Multi-Processing

  1. Put objects of gm0n, gm1n or gm11 into their own arrays.
  2. Run specific functions are: grey.run.gm0n(array), grey.run.gm1n(array) or grey.run.gm11(array).
  3. Enumerate the arrays, or enumerate .run.gm0n(), .run.gm1n() and .run.gm11() they returned arrays.
# multiprocessing examples:
# for GM0N, GM1N
queue = []
queue.append(gm0n.deepcopy())
queue.append(gm0n.deepcopy())
queue.append(gm0n.deepcopy())
queue.append(gm0n.deepcopy())
queue.append(gm0n.deepcopy())
queue.append(gm0n.deepcopy())
queue.append(gm0n.deepcopy())

grey.run.gm0n(queue)

for gm in queue:
    gm.print_influence_degrees()
# for GM11
gm11_queue = []
gm11_queue.append(gm11.deepcopy())
gm11_queue.append(gm11.deepcopy())
gm11_queue.append(gm11.deepcopy())
gm11_queue.append(gm11.deepcopy())
gm11_queue.append(gm11.deepcopy())
gm11_queue.append(gm11.deepcopy())
gm11_queue.append(gm11.deepcopy())

grey.run.gm11(gm11_queue)

for gm in gm11_queue:
    gm.print_forecasted_results()

Version

V1.3

LICENSE

MIT.

Note

卷積的部份,是跑 2 層的 GM11:

    1 -> 2 -> 3, 預測 4
    2 -> 3 -> 4, 預測 5
    3 -> 4 -> 5, 預測 6
    ... 其餘類推

之後會把預測 4,5,6 再丟進去 GM11 跑最終結果。等於是先做一次特徵提取,第 1 層提取每一個區間的預測輸出,再對這預測輸出做平均誤差的修正,而後再丟入第 2 層的 GM11 去做總輸出。

Project details


Release history Release notifications | RSS feed

This version

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

greytheory-0.1.tar.gz (8.8 kB view details)

Uploaded Source

Built Distribution

greytheory-0.1-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file greytheory-0.1.tar.gz.

File metadata

  • Download URL: greytheory-0.1.tar.gz
  • Upload date:
  • Size: 8.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.4.2 requests/2.22.0 setuptools/39.1.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.5

File hashes

Hashes for greytheory-0.1.tar.gz
Algorithm Hash digest
SHA256 c958749e6bf91f791ad3d1c615ce232193fe7b06896bf668b8c531623b4e8732
MD5 f7f12c62ac8a6f043e61a02b832d78a4
BLAKE2b-256 6e8ce6d961f4c63687c447ba921a97d9beefcc08cc43eceb50a96725b3bf4c77

See more details on using hashes here.

File details

Details for the file greytheory-0.1-py3-none-any.whl.

File metadata

  • Download URL: greytheory-0.1-py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.4.2 requests/2.22.0 setuptools/39.1.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.5

File hashes

Hashes for greytheory-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 541d25876deea62ff8b6f3f647110d5107258d85e2d1d614cbefa7d0c18d59d4
MD5 11d2cd5cb6790d5a57a3fb2eb586bb3e
BLAKE2b-256 ad9e7f3dbf8f7c0eca936e4b2a9bec14733d7ec1eb6393eb4169df45f654db67

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page