Skip to main content
Join the official Python Developers Survey 2018 and win valuable prizes: Start the survey!

Simple tool that assists with preprocessing pandas dataframes for Machine Learning.

Project description

Grimlock

We all know that when it comes to machine learning, it takes far more time to preprocess your data than it does to actually build a model. Enter, grimlock.

grimlock will fix your missing values, handle data encoding, and feature scaling.

Installation

Provided you already have NumPy, SciPy, Sci-kit Learn and Pandas already installed, the grimlock package is pip-installable:

$ pip install grimlock

Cleaning Missing Data

Mesh of pandas.fillna() and sklearn Imputer

from grimlock import clean_missing
clean_missing(dataframe, column, clean_type='zero')

Parameters

  • dataframe: dataframe variable
  • column: column name (string)
  • clean_type: 'zero' (default), 'mean', 'mode', 'most_frequent' (string)

Convert Categorical

Quick conversion for categorical features (non-ordinal)

from grimlock import convert_categorical
convert_categorical(dataframe, column, target_column)

Parameters

  • dataframe: dataframe variable
  • column: column name (string)
  • target_column: target column name (string)

Feature Scaling

coming soon

Project details


Release history Release notifications

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
grimlock-0.0.1-py3-none-any.whl (2.8 kB) Copy SHA256 hash SHA256 Wheel py3 Jun 14, 2018
grimlock-0.0.1.tar.gz (2.3 kB) Copy SHA256 hash SHA256 Source None Jun 14, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page