Skip to main content

Simple tool that assists with preprocessing pandas dataframes for Machine Learning.

Project description

Grimlock

We all know that when it comes to machine learning, it takes far more time to preprocess your data than it does to actually build a model. Enter, grimlock.

grimlock will fix your missing values, handle data encoding, and feature scaling.

Installation

Provided you already have NumPy, SciPy, Sci-kit Learn and Pandas already installed, the grimlock package is pip-installable:

$ pip install grimlock

Cleaning Missing Data

Mesh of pandas.fillna() and sklearn Imputer

from grimlock import clean_missing
clean_missing(dataframe, column, clean_type='zero')

Parameters

  • dataframe: dataframe variable
  • column: column name (string)
  • clean_type: 'zero' (default), 'mean', 'mode', 'most_frequent' (string)

Convert Categorical

Quick conversion for categorical features (non-ordinal)

from grimlock import convert_categorical
convert_categorical(dataframe, column, target_column)

Parameters

  • dataframe: dataframe variable
  • column: column name (string)
  • target_column: target column name (string)

Feature Scaling

coming soon

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grimlock-0.0.1.tar.gz (2.3 kB view details)

Uploaded Source

Built Distribution

grimlock-0.0.1-py3-none-any.whl (2.8 kB view details)

Uploaded Python 3

File details

Details for the file grimlock-0.0.1.tar.gz.

File metadata

  • Download URL: grimlock-0.0.1.tar.gz
  • Upload date:
  • Size: 2.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for grimlock-0.0.1.tar.gz
Algorithm Hash digest
SHA256 033b8e23f27e1321d61871bfd029b6136c3b70ba4ce5cb39514b9f6f6cda6e1e
MD5 c2b0a12d94ad95a0c92615875404523b
BLAKE2b-256 3f34f5272217c1255fa4a1879e390b525c5a8ef32c595b93f2d5148e37e0e49e

See more details on using hashes here.

File details

Details for the file grimlock-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for grimlock-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1609e90e8e7cd5f3c34270640d67fcc122addcc4a7d70bb36e4dfa2dd8a1af9c
MD5 40b4d7e7ec2caa79fa1020380e57db2e
BLAKE2b-256 faa821a621d2403046b78de2a7c44b13add75ebc81a26d5a23493ae638227e83

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page