Simple tool that assists with preprocessing pandas dataframes for Machine Learning.
Project description
Grimlock
We all know that when it comes to machine learning, it takes far more time to preprocess your data than it does to actually build a model. Enter, grimlock.
grimlock will fix your missing values, handle data encoding, and feature scaling.
Installation
Provided you already have NumPy, SciPy, Sci-kit Learn and Pandas already installed, the grimlock package is pip-installable:
$ pip install grimlock
Cleaning Missing Data
Mesh of pandas.fillna() and sklearn Imputer
from grimlock import clean_missing clean_missing(dataframe, column, clean_type='zero')
Parameters
- dataframe: dataframe variable
- column: column name (string)
- clean_type: 'zero' (default), 'mean', 'mode', 'most_frequent' (string)
Convert Categorical
Quick conversion for categorical features (non-ordinal)
from grimlock import convert_categorical convert_categorical(dataframe, column, target_column)
Parameters
- dataframe: dataframe variable
- column: column name (string)
- target_column: target column name (string)
Feature Scaling
coming soon
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file grimlock-0.0.1.tar.gz.
File metadata
- Download URL: grimlock-0.0.1.tar.gz
- Upload date:
- Size: 2.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
033b8e23f27e1321d61871bfd029b6136c3b70ba4ce5cb39514b9f6f6cda6e1e
|
|
| MD5 |
c2b0a12d94ad95a0c92615875404523b
|
|
| BLAKE2b-256 |
3f34f5272217c1255fa4a1879e390b525c5a8ef32c595b93f2d5148e37e0e49e
|
File details
Details for the file grimlock-0.0.1-py3-none-any.whl.
File metadata
- Download URL: grimlock-0.0.1-py3-none-any.whl
- Upload date:
- Size: 2.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
1609e90e8e7cd5f3c34270640d67fcc122addcc4a7d70bb36e4dfa2dd8a1af9c
|
|
| MD5 |
40b4d7e7ec2caa79fa1020380e57db2e
|
|
| BLAKE2b-256 |
faa821a621d2403046b78de2a7c44b13add75ebc81a26d5a23493ae638227e83
|