Skip to main content

Geostatistics & Machine Learning toolbox

Project description

gstlearn: The Geostatistics & Machine Learning Python Package

License DOI

The gstlearn Python package is a cross-platform Python package wrapping the gstlearn C++ Library. It offers to Python users all famous Geostatistical methodologies developed and/or invented by the Geostatistic Team of the Geosciences Research Center!

More details for gstlearn are available here: https://gstlearn.org

If you need to plot gstlearn outputs, you can import gstlearn.plot module which is based on matplotlib.

References

The gstlearn Python package is a Python wrapper of the gstlearn C++ Library.

This package contains a copy of doxy2swig python script (see LICENSE.doxy2swig in doc folder).

The gstlearn Python package is a derivative work based on the swigex0 project: https://github.com/fabien-ors/swigex0

How to cite

When using the gstlearn Python Package, please, use this to cite us in any publication or results for which gstlearn has been used:

DOI

You may be interested in the citation file gstlearn.bib

Installation

For using this Python package you only need Python 3.8 (or higher) (with numpy, pandas and matplotlib) and execute the following command:

pip install gstlearn

For installing a prerelease version:

pip install --pre --force-reinstall gstlearn

The gstlearn.plot Python module requires additional dependencies, those can be installed alongside gstlearn with the following command:

pip install gstlearn[plot]

Converting several gstlearn C++ types through toTL methods to, e.g., Pandas DataFrames also require additional dependencies. These are available through the conv optional dependency group:

pip install gstlearn[conv]

All optional dependencies can be installed with the following command:

pip install gstlearn[all]

Usage

We refer the reader to this course page for an introduction and important information about Python gstlearn package.

Simply import the gstlearn Python package and its plot module, then enjoy:

# Import packages
import numpy as np
import matplotlib.pyplot as plt
import gstlearn as gl
import gstlearn.plot as gp
# Grid size
nx = 60
ny = 30
mygrid = gl.DbGrid.create([nx,ny],[1,1])
# Add a gaussian random field
var = np.random.randn(nx * ny)
mygrid.addColumns(var, "var1", gl.ELoc.Z)
# Display the field
gp.raster(mygrid)
gp.decoration(title="Gaussian random field")
plt.show()

Some tutorials (Jupyter Notebooks) are provided in the demo directory here and their HTML rendering is provided here.

Some tests (Python scripts) are available in the tests directory of the gstlearn github repository.

Known caveats

If you experience the following error while importing gstlearn package under Python:

RuntimeError: module compiled against API version 0x10 but this version of numpy is 0xe

... you may need to upgrade numpy:

python -m pip install --upgrade numpy

Documentation

The classes and functions documentation is provided with the gstlearn C++ library as html files generated by Doxygen. Please, refer to gstlearn C++ library API See here for more details. Only the public methods are exported by SWIG and must be considered in the Python package.

Changelog

Please, look at CHANGES file.

Development

Requirements

For building the gstlearn Python package, the requirements for compiling gstlearn C++ library must be installed beforehand. Then, the following additional tools must be also available:

  • SWIG 4 or higher
  • Python 3 or higher with uv and numpy modules installed

If you modified your system, you must reinstall the requirements from scratch following next instructions. You must delete 'gstlearn' existing source folders (if so).

Note :

Linux (Ubuntu)

  1. Install gstlearn C++ library requirements for Linux here

  2. Then, execute the following commands:

sudo apt install python3
sudo apt install python3-pip
sudo apt install swig
python3 -m pip install numpy uv

MacOS

  1. Install gstlearn C++ library requirements for MacOS here

  2. Then, execute the following commands (Not tested):

brew install python3
brew install swig
python3 -m pip install numpy uv

Notes:

  • These instructions for MacOS are currently not tested - above packages may not exist

Windows

Install all tools
  1. Install gstlearn C++ library requirements for Windows (Microsoft Visual Studio) here

  2. Then, download and install the following tools using default options during installation:

  • Python 3+ from here (Windows installer [exe] - check 'Add python.exe to PATH' in the first panel)
  • SWIG 4+ from here (swigwin archive [zip], archive file to be extracted in a folder of your choice, but not in the gstlearn source folder - remind the installation folder, assume it is C:\swigwin-4.1.0))
  1. Then, install additional Python modules by running following instructions in a command prompt:
python -m pip install numpy uv
Update the Path environment variable

The Path environment variable (System variables) must be updated to make swig.exe available in the batch command line:

  1. Follow this guide to add SWIG installation folders in the Path System variable (i.e: C:\swigwin-4.1.0)
  2. Restart Windows

Installation from Source

  1. For getting the gstlearn Python package sources files, just clone the github repository:
git clone https://github.com/gstlearn/gstlearn.git
cd gstlearn

Next time, you will only need to pull the repository (If you have some local undesirable modifications, you have to revert them and execute the pull, otherwise do not execute git reset):

cd gstlearn
git reset --hard
git pull
  1. Then, these instructions will compile and install the gstlearn Python package in your usual Python site-packages directory.

GCC, Clang, ...

...or any other single configuration compilers:

cmake -Bbuild -S. -DBUILD_PYTHON=ON -DCMAKE_BUILD_TYPE=Release
cmake --build build --target python_install

or for those who prefer a single command line:

mkdir -p build & cd build & cmake .. -DBUILD_PYTHON=ON & make python_install

or even faster:

make python_install

Microsoft Visual Studio, ...

...or any other multiple configurations compilers:

cmake -Bbuild -S. -DBUILD_PYTHON=ON
cmake --build build --target python_install --config Release

Execute Non-regression Tests

The check* targets bring some required runtime customization, so do not use the standard ctest command for triggering the non-regression tests.

To build and launch non-regression Python tests, you need to execute the following command:

GCC, Clang, MinGW, ...

...or any other single configuration compiler:

cmake --build build --target check_py
cmake --build build --target check_ipynb

or even faster:

make check_py
make check_ipynb

Microsoft Visual Studio, ...

...or any other multiple configurations compiler:

cmake --build build --target check_py --config Release
cmake --build build --target check_ipynb --config Release

Important Notes

  • If your system distribution repository doesn't provide minimum required versions, please install the tools manually (see provider website)
  • You may need to reconnect to your session after installing some requirements
  • If you plan to generate the documentation, add -DBUILD_DOC=ON to the first cmake command above.
  • If you don't know how to execute github commands, you may read this.
  • Using Visual Studio on a Windows where MinGW is also installed may need to add -G "Visual Studio 16 2019" in the first command (adapt version).
  • The Windows C++ Compiler used must be the same that the one used for compiling Python (Visual C++). Using another compiler than Visual C++ is not supported.
  • If you want to build and install the Debug version, you must replace Release by Debug above
  • You may need to precise the location of Boost, Eigen3, SWIG, Doxygen, HDF5 or NLopt installation directory. In that case, add the following variables in the first cmake command above:
    • -DBoost_ROOT="path/to/boost"
    • -DEigen3_ROOT="path/to/eigen3"
    • -DSWIG_ROOT="path/to/swig"
    • -DDoxygen_ROOT="path/to/doxygen"
    • -DHDF5_ROOT="path/to/hdf5"
    • -DNLopt_ROOT="path/to/nlopt"

Remove Installed Package

To uninstall the gstlearn Python package, execute following command:

python3 -m pip uninstall gstlearn

Note : You may need to directly modify your site-packages folder by:

  • Removing the reference to the old gstlearn package version (see this topic)
  • Removing a line which contains gstlearn in the ./easy-install.pth file of the site-packages folder
  • Removing all directories starting with '~stlearn from the site-packages folder

License

BSD 3-clause

2025 Team gstlearn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

gstlearn-1.10.1-cp314-cp314-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.14Windows x86-64

gstlearn-1.10.1-cp314-cp314-win32.whl (7.4 MB view details)

Uploaded CPython 3.14Windows x86

gstlearn-1.10.1-cp314-cp314-manylinux_2_28_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ x86-64

gstlearn-1.10.1-cp314-cp314-macosx_26_0_arm64.whl (7.8 MB view details)

Uploaded CPython 3.14macOS 26.0+ ARM64

gstlearn-1.10.1-cp314-cp314-macosx_15_0_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.14macOS 15.0+ x86-64

gstlearn-1.10.1-cp314-cp314-macosx_15_0_arm64.whl (7.8 MB view details)

Uploaded CPython 3.14macOS 15.0+ ARM64

gstlearn-1.10.1-cp314-cp314-macosx_14_0_arm64.whl (7.7 MB view details)

Uploaded CPython 3.14macOS 14.0+ ARM64

gstlearn-1.10.1-cp313-cp313-win_amd64.whl (8.4 MB view details)

Uploaded CPython 3.13Windows x86-64

gstlearn-1.10.1-cp313-cp313-win32.whl (7.3 MB view details)

Uploaded CPython 3.13Windows x86

gstlearn-1.10.1-cp313-cp313-manylinux_2_28_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

gstlearn-1.10.1-cp313-cp313-macosx_26_0_arm64.whl (7.8 MB view details)

Uploaded CPython 3.13macOS 26.0+ ARM64

gstlearn-1.10.1-cp313-cp313-macosx_15_0_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.13macOS 15.0+ x86-64

gstlearn-1.10.1-cp313-cp313-macosx_15_0_arm64.whl (7.8 MB view details)

Uploaded CPython 3.13macOS 15.0+ ARM64

gstlearn-1.10.1-cp313-cp313-macosx_14_0_arm64.whl (7.7 MB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

gstlearn-1.10.1-cp312-cp312-win_amd64.whl (8.4 MB view details)

Uploaded CPython 3.12Windows x86-64

gstlearn-1.10.1-cp312-cp312-win32.whl (7.3 MB view details)

Uploaded CPython 3.12Windows x86

gstlearn-1.10.1-cp312-cp312-manylinux_2_28_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

gstlearn-1.10.1-cp312-cp312-macosx_26_0_universal2.whl (7.8 MB view details)

Uploaded CPython 3.12macOS 26.0+ universal2 (ARM64, x86-64)

gstlearn-1.10.1-cp312-cp312-macosx_15_0_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.12macOS 15.0+ x86-64

gstlearn-1.10.1-cp312-cp312-macosx_15_0_universal2.whl (7.8 MB view details)

Uploaded CPython 3.12macOS 15.0+ universal2 (ARM64, x86-64)

gstlearn-1.10.1-cp312-cp312-macosx_14_0_universal2.whl (7.7 MB view details)

Uploaded CPython 3.12macOS 14.0+ universal2 (ARM64, x86-64)

gstlearn-1.10.1-cp311-cp311-win_amd64.whl (8.4 MB view details)

Uploaded CPython 3.11Windows x86-64

gstlearn-1.10.1-cp311-cp311-win32.whl (7.3 MB view details)

Uploaded CPython 3.11Windows x86

gstlearn-1.10.1-cp311-cp311-manylinux_2_28_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

gstlearn-1.10.1-cp311-cp311-macosx_26_0_universal2.whl (7.8 MB view details)

Uploaded CPython 3.11macOS 26.0+ universal2 (ARM64, x86-64)

gstlearn-1.10.1-cp311-cp311-macosx_15_0_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.11macOS 15.0+ x86-64

gstlearn-1.10.1-cp311-cp311-macosx_15_0_universal2.whl (7.8 MB view details)

Uploaded CPython 3.11macOS 15.0+ universal2 (ARM64, x86-64)

gstlearn-1.10.1-cp311-cp311-macosx_14_0_universal2.whl (7.7 MB view details)

Uploaded CPython 3.11macOS 14.0+ universal2 (ARM64, x86-64)

gstlearn-1.10.1-cp310-cp310-win_amd64.whl (8.4 MB view details)

Uploaded CPython 3.10Windows x86-64

gstlearn-1.10.1-cp310-cp310-win32.whl (7.3 MB view details)

Uploaded CPython 3.10Windows x86

gstlearn-1.10.1-cp310-cp310-manylinux_2_28_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

gstlearn-1.10.1-cp310-cp310-macosx_26_0_arm64.whl (7.8 MB view details)

Uploaded CPython 3.10macOS 26.0+ ARM64

gstlearn-1.10.1-cp310-cp310-macosx_15_0_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.10macOS 15.0+ x86-64

gstlearn-1.10.1-cp310-cp310-macosx_15_0_arm64.whl (7.8 MB view details)

Uploaded CPython 3.10macOS 15.0+ ARM64

gstlearn-1.10.1-cp310-cp310-macosx_14_0_arm64.whl (7.7 MB view details)

Uploaded CPython 3.10macOS 14.0+ ARM64

gstlearn-1.10.1-cp39-cp39-manylinux_2_28_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

File details

Details for the file gstlearn-1.10.1-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: gstlearn-1.10.1-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.4

File hashes

Hashes for gstlearn-1.10.1-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 d6a40ee53becad4cda0842701b5e770eace129689161554dc3b2ea9d4622f17d
MD5 cd3ca291b32f9f54752e4d17889dbcd2
BLAKE2b-256 08af043c764e9c8b75b4fb55010aa5878c66e8c553b0ecaa3c561fe9a6823dd9

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp314-cp314-win32.whl.

File metadata

  • Download URL: gstlearn-1.10.1-cp314-cp314-win32.whl
  • Upload date:
  • Size: 7.4 MB
  • Tags: CPython 3.14, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.4

File hashes

Hashes for gstlearn-1.10.1-cp314-cp314-win32.whl
Algorithm Hash digest
SHA256 bacfd0f7c18236ac55346789ff709bfb479c564674b66ede44751d7471365db7
MD5 3cfb3778fa0c6ae15de9a3a1087470d3
BLAKE2b-256 10323d4d8c0b36689ce392ab95ac6db65ca6a2261504bc98b14e99b16d792c52

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp314-cp314-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp314-cp314-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dfd7dc90ce23dead0dc0a2e7d0a86d047d47ac36868db1776230087a02ae9576
MD5 6e5fd032d251e099c6c3380754dce0df
BLAKE2b-256 cf5a5bcc4e3bea29a15723cb9a3c13328aa32195f0b77d789e4552c73b67ab4e

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp314-cp314-macosx_26_0_arm64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp314-cp314-macosx_26_0_arm64.whl
Algorithm Hash digest
SHA256 282e2dd2c259d8dc4463b53454aae54ba70e104d7fb512d127e99b2920c16e29
MD5 135d35eaf24ed601e8a4165213f57ba4
BLAKE2b-256 c48fd4edc096df26e6f4457cba98c859430ecd4f8a345084348a9ae7d35e2283

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp314-cp314-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp314-cp314-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 1b0bc7019340c177a280d56d3c5efaf5c3666928a7e3e32b16c735d9753cc6a5
MD5 9e4b0b9c545b202ebd078f812ff1ebcf
BLAKE2b-256 6e87fc73be224d79228f6b8eefa5cdbec3a1d349b5d724bcae16ca7f7e0aaaf3

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp314-cp314-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp314-cp314-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 058f101ff177209b712e87106b019a116e086d85c105f4d3084809134eec27b4
MD5 20659b6a268767992a1edeb805eddcb8
BLAKE2b-256 74f38b8f285a89d69c9f427755d0afbf2fb3a4a7bedae0953b8dba53c15f3e8e

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp314-cp314-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp314-cp314-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 35e5144a45b9db30ddf4e60670e4cff645fde5e5c65a98c06ea409ee28afc0e8
MD5 24ccf533af4f152386f11788de12d578
BLAKE2b-256 3add2b5b8bb72fb38687bf025515bee5f1a58dfd7dd90c622e40ebaf8619f882

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: gstlearn-1.10.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.4

File hashes

Hashes for gstlearn-1.10.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 7e6ea594649988a477cf822999e9b0a6b0d783892c92c1d5f3e958261e330ed9
MD5 382b8a2ed89154d3772b0bf1bc73d3ff
BLAKE2b-256 1deafeb12b56620cfff26dd8d43b8dc7a217b3301ff1bd2a8abd673fee90d953

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: gstlearn-1.10.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.4

File hashes

Hashes for gstlearn-1.10.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 807c16d3acc6c2c88a1018649b017b6d964f7e8ef314fe2f7d6883e11db0e9e5
MD5 935eefdd4f8cd19ce47b678e66d0fc91
BLAKE2b-256 22a13cdec55ad224646df7b83104db6ae47eb5280efca606135e321b2629f715

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8a249cf8c09408b48c82f017cc06132007c5c69a29763056117a9e5c68eb7ab9
MD5 d0d1665911e2ea14703fd581e27aeec7
BLAKE2b-256 833a1bf199c141bf8379160b8183f0c70a139d5eb16cf4d2a65cd8fe371b0de1

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp313-cp313-macosx_26_0_arm64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp313-cp313-macosx_26_0_arm64.whl
Algorithm Hash digest
SHA256 72d6a8dc2121aea4337dccd8f6ee5ef56361d560bc429f8eee517eb6fd3362c1
MD5 8b7e3167e050f77ac917c24bdfeb8704
BLAKE2b-256 c5c9be3a0972fc75a6fdeef251b8b423a58a12cb92c843cae7373146e233239a

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp313-cp313-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp313-cp313-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 386f6fd958a9f21b050ae444b75ba19dfe3c7860b981b16c0d0d2c305a530080
MD5 2aa5b674c4ea83f2cd66a92d6c1b17d8
BLAKE2b-256 a9341bb57508fa181c854ddd7f325b170abe5974bee8ce1f77eb74e1d3bd52d4

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp313-cp313-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp313-cp313-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 13741864c6fbe892f1789c841cd1f63bca89d1dfbe983aa09909a35e281dad39
MD5 f87417a368ee024724136fc69b505f64
BLAKE2b-256 fa7df66fccd9c3bc20ed272b2e06e33f29fde81e680d09dc5e6e7ab81a9e884b

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 8c2828bda81eca944cd7105ecd9acb9f9d615c96561a6eb50a02591f188b5e16
MD5 f530b73342ef712321c80ae780444254
BLAKE2b-256 b3782cb3188a470062568b050c687554d7eb6847bce3003d50a5f65aba81d04d

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: gstlearn-1.10.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.4

File hashes

Hashes for gstlearn-1.10.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 dcde7ce7a761b353ed2ff97a1af75c1b0908e19c8630d773a1d478f08bd577fd
MD5 5b2557d5ef37dd47ab437b9aedcf9dad
BLAKE2b-256 f46e370e7b568afbae4b6474afaa9adc44c42312611cb748f879775a5c13180c

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: gstlearn-1.10.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.4

File hashes

Hashes for gstlearn-1.10.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 a66b1c43275ae86ecb839a9cbc45465feac0685a3a8ced708561c349c98e683a
MD5 917e607eb5f4bb7012b590930a94092a
BLAKE2b-256 10a72a749cef6c4d01e451d3a7612f77ecebd268040809119a4a3d1a38a344da

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6fc6a9333cccd78bed7b20c097754d697596312469e83f9a39cb128faa077417
MD5 b11ec6e6d39d96ba9a516889a9f9537a
BLAKE2b-256 6a6b365d5316a4e6c587b0dc64647bec19b1207a19e971a4142a728f63c86b3e

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp312-cp312-macosx_26_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp312-cp312-macosx_26_0_universal2.whl
Algorithm Hash digest
SHA256 585e51795c036f0b0e7ff1b1d0ad3e135be9f3c5fca2046f06a931b35fd24f61
MD5 2044f87faa2b14e082ca48b637ac9126
BLAKE2b-256 d725a4ed916c8df3d4addca55c286e0cb1acef1a3a82a0b7c71d31e1c7e480b4

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp312-cp312-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp312-cp312-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 d5de551fdb74950b7df29dfd8e02e7d0226f2c430bafceee0c0aa6635a5c65d3
MD5 59e0e32c7543e941c29337fbeb4b2ef5
BLAKE2b-256 77ac2f23ed51fc09a57e367a710697bfcb4e1f17ae51245db08f6c7a28b81727

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp312-cp312-macosx_15_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp312-cp312-macosx_15_0_universal2.whl
Algorithm Hash digest
SHA256 1fada2287ae3c0f229eac3ae66e85a7a2f61f6cb74c7466ad4b37f754bf57a8c
MD5 b37e6543885e7f80e7c0e0d8352edd72
BLAKE2b-256 ae23ba0a21335adf9b0f805017f7c446ba792999f9d0d82e9328f749914f189a

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp312-cp312-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp312-cp312-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 cf2233a2f0b00f4a2b17c974aa1246cc7f7219925cceaff5afcd00b83284e5c9
MD5 dabe3c5453a164a524e74b55703726f6
BLAKE2b-256 d7a318404d8c7e024e16af54096517d8cf4c4a2a30b9a84e495ee1382c68913e

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gstlearn-1.10.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.4

File hashes

Hashes for gstlearn-1.10.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a03f69c0945ba29cde466a3560f8f8c27631f8759e7caf7fab119b510ee5c437
MD5 804f51187ef6cc9866946c0cfa4152ba
BLAKE2b-256 14934cbe8f67be21abac835558505c930632db9db770f6e5983e7322d9fa71e2

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: gstlearn-1.10.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.4

File hashes

Hashes for gstlearn-1.10.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 2b9eab9cfa2dfef87eded99f6e1ae6eeca2b5a30298a0a43fa1812f482ce1d19
MD5 3e70a8b86ed35e2592c4953df974038b
BLAKE2b-256 86a1ece01a6293914a2025228e9863a7fcfe9283c9450550e9a31dc4a16ac788

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 973b635a194096c30fb358abe57022d857cd03b99c48dc09452ecaf228e12be2
MD5 e5dabc852dc58d45a6fde707bf865969
BLAKE2b-256 f7d95c0f6c3860afef33285c265fc5071038a11d539636e1eee8737180d782dc

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp311-cp311-macosx_26_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp311-cp311-macosx_26_0_universal2.whl
Algorithm Hash digest
SHA256 01b183f80a5ef0987a997392ab388d917462b25961cff637f6aef91168e990dc
MD5 7d897c55feed558ccdad13525ffacd45
BLAKE2b-256 ee31998f744da61a45e7d80554a9dd547afe99494759156378202b1bac5cc21e

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp311-cp311-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp311-cp311-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 303ffec580aac9c3ec8ae8b7963fa0871273d11045d2faa6cae7927c8d26f852
MD5 a67f04df3b96bef95abf312a1f9e6374
BLAKE2b-256 29f9ec4787b6e9e0104d408d694fbd727801d57596123615ad1b91902b216b28

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp311-cp311-macosx_15_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp311-cp311-macosx_15_0_universal2.whl
Algorithm Hash digest
SHA256 ca6bb9006ef527e67680bd9814f2999ddaafffc6594891ad586572fc078abebf
MD5 249f0ad6f5b030599459ae9e38c80c33
BLAKE2b-256 bbca9523aa3da8a7fc094288db3637704b112f939bce5bcbbe1f08eb38ff17f5

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp311-cp311-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp311-cp311-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 f17c3e7997dfe9eafff981309b07b6ccc5403f38cac17f88de3e77f072d8a5d6
MD5 e321e5255a49ea3e18c19074b65ba03c
BLAKE2b-256 505d00517285fd789806ff485c668352737b848d1dfa4a49fbd8351b0bde8ad2

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gstlearn-1.10.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.4

File hashes

Hashes for gstlearn-1.10.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1470b7a95252dade4d8ce2ee731d3f94413eba702523070def95aec072501c0c
MD5 c7d74e83d910d2158b0d0418cc4f67e3
BLAKE2b-256 52f2beda89816a2f3a5ed4f52f24ac4503c2d526344ccb3a8ae033cf3d7f3650

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: gstlearn-1.10.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.4

File hashes

Hashes for gstlearn-1.10.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 4b2a92f145e3718f5cfa4989a1b3eb282e56776dcf5220684e37b6f74546902e
MD5 38d849ea40eea08d479b03025714b9e6
BLAKE2b-256 f9cd371fda776014acacf4dae44ef1e1d0d4912c17cec8073affb1a578e76f5f

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3491eeb99f9ae4e708cdbe9d616bbc76e3600ada32afbe2b201398685bfbd53b
MD5 1be9be44d664289425765361ee9b0755
BLAKE2b-256 7b46fa9a96107e44df1ec855eafa1b3cd782a78d6d248d06e342568beff02132

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp310-cp310-macosx_26_0_arm64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp310-cp310-macosx_26_0_arm64.whl
Algorithm Hash digest
SHA256 cc09a5b6433721e3c38ad87471af13811ca1e67bb5c94008220f43a7e968d773
MD5 ae36c5bbe2a606d33190cb1c23128cc0
BLAKE2b-256 9513f7afb0385c209ec35fc7881ed7393dc084791da194ba56a123c1a0c2ecc6

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp310-cp310-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp310-cp310-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 1c9b7bb757f59013432b41b7829715b1cb9d820ffc7b64cad0e9082c20cef042
MD5 8efbab895fbf9bef7c9725e4a93b331a
BLAKE2b-256 de97b829f07c08ab6810eb9c119495782c29a30fbba5b81d7e31a3f18fe57637

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp310-cp310-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp310-cp310-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 aafdc32615b6e98dd17ca3f16bbd5f7772bd86023d9b85ded40b493e5a7ec488
MD5 acdd004d0d2ef659f055d99658a8fa0d
BLAKE2b-256 6dd2c957608c2ea5cb1eeaa97a9d6f044d867d32d461ac4b1f99c4bda51047c5

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 364ed9ab45178d312f4ccc3309aba5e62d80e31e92886205ff2d17b6038dc024
MD5 35637f1edc984c78d7d866a0ce09a9a0
BLAKE2b-256 bace255efd6806b630d60d97bd78b806f95d6115e03d671f9ca73b3ca6941d0b

See more details on using hashes here.

File details

Details for the file gstlearn-1.10.1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.10.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4df7d383b5cfa387b9effe2198b7d0a03a880da6f21bfe18e685f0675ce7c480
MD5 06553a852335011186973978b6393f7a
BLAKE2b-256 3d1896fb1348f3808da84f90a0289830e610d314fed7140b9b518460c184faea

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page