Skip to main content

Deep Guided Filtering Layer for PyTorch

Project description

[Project] [Paper] [arXiv] [Demo] [Home]

Official implementation of Fast End-to-End Trainable Guided Filter.
Faster, Better and Lighter for pixel-wise image prediction.

Paper

Fast End-to-End Trainable Guided Filter
Huikai Wu, Shuai Zheng, Junge Zhang, Kaiqi Huang
CVPR 2018

Install

pip install guided-filter-pytorch

Usage

from guided_filter_pytorch.guided_filter import FastGuidedFilter

hr_y = FastGuidedFilter(r, eps)(lr_x, lr_y, hr_x)
from guided_filter_pytorch.guided_filter import GuidedFilter

hr_y = GuidedFilter(r, eps)(hr_x, init_hr_y)
from guided_filter_pytorch.guided_filter import ConvGuidedFilter

hr_y = ConvGuidedFilter(r, norm)(lr_x, lr_y, hr_x)

Citation

@inproceedings{wu2017fast,
  title     = {Fast End-to-End Trainable Guided Filter},
  author    = {Wu, Huikai and Zheng, Shuai and Zhang, Junge and Huang, Kaiqi},
  booktitle = {CVPR},
  year = {2018}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for guided-filter-pytorch, version 3.7.5
Filename, size File type Python version Upload date Hashes
Filename, size guided_filter_pytorch-3.7.5-py3-none-any.whl (3.8 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size guided_filter_pytorch-3.7.5.tar.gz (3.8 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page