Skip to main content

Gym tool use environments.

Project description

Gym Tool Use

gym tool use environments.

$ pip install gym-tool-use


import gym_tool_use  # import to register gym envs
env = gym.make("TrapTube-v0")
observation = env.reset()
action = env.action_space.sample()
observation_next, reward, done, info = env.step(action)
image = env.render(mode="rgb_array")  # also supports mode="human"


The following environments are registered:

  • "TrapTube-v0" (base task)
  • "PerceptualTrapTube-v0"
  • "StructuralTrapTube-v0"
  • "SymbolicTrapTube-v0"
  • "PerceptualSymbolicTrapTube-v0"
  • "StructuralSymbolicTrapTube-v0"
  • "PerceptualStructuralTrapTube-v0"
  • "PerceptualStructuralSymbolicTrapTube-v0"


Baseline implementations here:


Development is started with pipenv.

$ pipenv install
$ pipenv shell

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gym-tool-use-1.0.0.tar.gz (12.9 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page