Skip to main content

Gym tool use environments.

Project description

Gym Tool Use

gym tool use environments.

$ pip install gym-tool-use


import gym_tool_use  # import to register gym envs
env = gym.make("TrapTube-v0")
observation = env.reset()
action = env.action_space.sample()
observation_next, reward, done, info = env.step(action)
image = env.render(mode="rgb_array")  # also supports mode="human"


The following environments are registered:

  • "TrapTube-v0" (base task)
  • "PerceptualTrapTube-v0"
  • "StructuralTrapTube-v0"
  • "SymbolicTrapTube-v0"
  • "PerceptualSymbolicTrapTube-v0"
  • "StructuralSymbolicTrapTube-v0"
  • "PerceptualStructuralTrapTube-v0"
  • "PerceptualStructuralSymbolicTrapTube-v0"


Baseline implementations here:


Development is started with pipenv.

$ pipenv install
$ pipenv shell

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gym-tool-use-1.0.0.tar.gz (12.9 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page