Skip to main content

A lightweight toolkit for neural architecture search experiments.

Project description

gymnastics

License CI status Code analysis Colab

A "gym" style toolkit for building lightweight Neural Architecture Search systems. I know, the name is awful.

Installation

pip install gymnastics

If you want to use NAS-Bench-101, follow the instructions here.

Overview

Over the course of the final year of my PhD I worked a lot on Neural Architecture Search (NAS) and built a bunch of tooling to make my life easier. This is an effort to standardise the various features into a single framework and provide a "gym" style toolkit for comparing various algorithms.

The key use cases for this library are:

  • test out new predictors on various NAS benchmarks
  • visualise the cells/graphs of your architectures
  • add new operations to NAS spaces
  • add new backbones to NAS spaces

The framework revolves around three key classes:

  1. Model
  2. Proxy
  3. SearchSpace

Obligatory builder pattern README example

Using gymnastics we can very easily reconstruct NAS spaces (the goal being that it's easy to define new and exciting ones).

For example, here's how easy it is to redefine the NATS-Bench / NAS-Bench-201 search space:

from gymnastics.searchspace import SearchSpace, CellSpace, Skeleton
from gymnastics.searchspace.ops import Conv3x3, Conv1x1, AvgPool2d, Skip, Zeroize

search_space = SearchSpace(
    CellSpace(
        ops=[Conv3x3, Conv1x1, AvgPool2d, Skip, Zeroize], num_nodes=4, num_edges=6
    ),
    Skeleton(
        style=ResNetCIFAR,
        num_blocks=[5, 5, 5],
        channels_per_stage=[16, 32, 64],
        strides_per_stage=[1, 2, 2],
        block_expansion=1
    ),
)


# create an accuracy predictor
from gymnastics.proxies import NASWOT
from gymnastics.datasets import CIFAR10Loader

proxy = NASWOT()
dataset = CIFAR10Loader(path="~/datasets/cifar10", download=False)

minibatch, _ = dataset.sample_minibatch()

best_score = 0.0
best_model = None

# try out 10 random architectures and save the best one
for i in range(10):

    model = search_space.sample_random_architecture()

    y = model(minibatch)

    score = proxy.score(model, minibatch)

    if score > best_score:
        best_score = score
        best_model = model

best_model.show_picture()

Which prints:

Have a look in examples/ for more examples.

NAS-Benchmarks

If you have designed a new proxy for accuracy and want to test its performance, you can use the benchmarks available in benchmarks/.

The interface to the benchmarks is exactly the same as the above example for SearchSpace.

For example, here we score networks from the NDS ResNet space using random input data:

import torch
from gymnastics.benchmarks import NDSSearchSpace
from gymnastics.proxies import Proxy, NASWOT

search_space = NDSSearchSpace(
    "~/nds/data/ResNet.json", searchspace="ResNet"
)

proxy: Proxy = NASWOT()
minibatch: torch.Tensor = torch.rand((10, 3, 32, 32))

scores = []

for _ in range(10):
    model = search_space.sample_random_architecture()
    scores.append(proxy.score(model, minibatch))

Additional supported operations

In addition to the standard NAS operations we include a few more exotic ones, all in various states of completion:

Op Paper Notes
conv - params: kernel size
gconv - + params: group
depthwise separable pdf + no extra params needed
mixconv pdf + params: needs a list of kernel_sizes
octaveconv pdf Don't have a sensible way to include this as a single operation yet
shift pdf no params needed
ViT pdf
Fused-MBConv pdf
Lambda pdf

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gymnastics-0.0.1.tar.gz (172.4 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page