Skip to main content

Handle H transport properties

Project description

H-transport-materials

DOI CI codecov

Installation

pip install h-transport-materials

Usage

  1. Access the internal database
  2. Add custom properties
  3. Filters
  4. Compute mean values
  5. Export to BibTeX

Access the internal database

import h_transport_materials as htm
import matplotlib.pyplot as plt

# filter only tungsten and H
diffusivities = htm.diffusivities.filter(material="tungsten").filter(isotope="h")

htm.plotting.plot(diffusivities)


plt.yscale("log")
plt.ylabel("Diffusivity (m$^2$/s)")
plt.legend()
plt.show()

Figure_1

Add custom properties

import h_transport_materials as htm

import numpy as np

# Create a custom property
my_custom_property = htm.ArrheniusProperty(pre_exp=1e-5, act_energy=0.2)

# From (T, y) data
my_fitted_property = htm.ArrheniusProperty(
    data_T=[300, 400, 500, 600],
    data_y=[1e-8, 1e-7, 1e-6, 1e-5],
)

print("Pre-exponential factor: {:.2e}".format(my_fitted_property.pre_exp))
print("Activation energy: {:.2f} eV".format(my_fitted_property.act_energy))

# Pre-exponential factor: 4.40e-03
# Activation energy: 0.35 eV

Filters

import h_transport_materials as htm

# tungsten solubilities
htm.solubilities.filter(material="tungsten")

# copper and cucrzr solubilities
htm.solubilities.filter(material=["copper", "cucrzr"])

# all_authors_except_ryabchikov
htm.diffusivities.filter(material="tungsten").filter(author="ryabchikov", exclude=True)

# only Tritium
htm.diffusivities.filter(isotope="t")

Compute mean values

import h_transport_materials as htm
import matplotlib.pyplot as plt

tungsten_diffusivities = htm.diffusivities.filter(material="tungsten").filter(
    author=["moore", "zakharov"], exclude=True
)

# compute mean diffusivity
mean_diffusivity = tungsten_diffusivities.mean()

# plot
htm.plotting.plot(tungsten_diffusivities, alpha=0.5)

htm.plotting.plot(mean_diffusivity, color="black", linewidth=3)

x_annotation = 0.0034
plt.annotate("mean value", (x_annotation, mean_diffusivity.value(T=1 / x_annotation)))

plt.ylabel("Diffusivity (m$^2$ s$^{-1}$)")
plt.yscale("log")
plt.show()

Figure_1

Export to BibTeX

The refernces of properties and properties groups can be exported to a bibfile.

import h_transport_materials as htm

tungsten_diffusivities = htm.diffusivities.filter(material="tungsten")

tungsten_diffusivities.export_bib("my_bibfile.bib")

Contributions

The current database is far from complete. Contributions are most welcome to extend it by adding new properties and also new materials!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

h_transport_materials-0.12.7a0.tar.gz (4.6 MB view details)

Uploaded Source

Built Distribution

h_transport_materials-0.12.7a0-py3-none-any.whl (150.8 kB view details)

Uploaded Python 3

File details

Details for the file h_transport_materials-0.12.7a0.tar.gz.

File metadata

File hashes

Hashes for h_transport_materials-0.12.7a0.tar.gz
Algorithm Hash digest
SHA256 22d0051cf07ad4e842099f7e8c78d1e0ff22646bb3397ce3053f913997049005
MD5 41e48106e90b7b15d716739d45c32bc7
BLAKE2b-256 951636c607a9d5378ec415047a996e58a05f0300e2b5f05e0ee4f1139a0f5bad

See more details on using hashes here.

File details

Details for the file h_transport_materials-0.12.7a0-py3-none-any.whl.

File metadata

File hashes

Hashes for h_transport_materials-0.12.7a0-py3-none-any.whl
Algorithm Hash digest
SHA256 23c1eaf008f8b0ad7afbdd129082368242df645d0578940c2f00326f10eb18ca
MD5 fef940a26410badeb1a1e9aa08cf47c1
BLAKE2b-256 3e74d552f2fd682c54794ea4176594cdf9f6c926bc44459e3270c12b78d93936

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page