Skip to main content

An agent-based modeling framework for Python with a shallow learning curve and powerful visualization capabilities.

Project description


Helipad is an agent-based modeling framework for Python with powerful visualization capabilities and a shallow learning curve. Documentation and API reference can be found at


  • ⚓️ A simple hook-based API makes it easy to build a model without worrying about the features you don’t need
  • 📈 Interactive and live-updating visualizations, including time series, bar charts, networks, spatial, and an API for writing custom visualizations
  • 👋🏻 Flexible parameter API allows parameter values to be set programmatically, adjusted manually from the control panel while the model is running, or shocked stochastically
  • 🪐 Cross-platform and multimodal. Models can be written and run with a Tkinter GUI, in Jupyter notebooks, or without a GUI at all
  • 🤹🏻‍♂️ Agents can barter, buy and sell with money, reproduce both haploid and polyploid, and more
  • 🕺🏻 A variety of model types: sequential or random-activation models, matching models, multi-level models, network models, spatial models, and more

How to use

You can install Helipad using Pip.

pip install helipad

Once installed, getting started with a model is very simple.

from helipad import *
heli = Helipad()

#Use the heli object to set up here


The included bootstrap model contains a more detailed template, and the sample models exemplify various use cases. The documentation also includes a complete hook and function reference.


Helipad requires Python 3.7 or higher. The following libraries are also required:

The following libraries are optional but recommended:

Version History

  • 1.3: Allow mixing time series and other plots, display networks on spatial maps, goods API improvements
  • 1.2: Extensible visualization API, events, performance profiling, Jupyterlab support
  • 1.1: Virtual parameters, improved Jupyter flexibility, spatial pre-alpha, misc improvements
  • 1.0: Jupyter integration, hook decorators, and separated control panel from plotting
  • 0.7: Ability to output stackplots, parameter sweeps, and an updated parameter identification pattern
  • 0.6: Support for multi-level models
  • 0.5: Support for matching models, and the checkGrid class
  • 0.4: Initial PyPI release

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

helipad-1.3.2.tar.gz (194.3 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page