Skip to main content

human friendly excel creation in python

Project description

hfexcel 0.0.17 CircleCI codecov

human friendly excel creation in python

development versions of dependencies

  • Python 3.x
  • XlsxWriter==1.1.8
  • jsonschema==2.6.0
  • pytest
  • codecov
  • pytest-cov

install

pip install hfexcel

features

  • Human readable coding, building
  • Object-Obriented based readable models: HFExcelWorkbook, HFExcelSheet, HFExcelColumn, HFExcelColumn
  • HFExcelWorkbookFilter: Helper class to populate Excel from a JSON data (python dict) with a pre-defined json schema. (default:hfexcel.schemas.DEFAULT_SCHEMA)
  • HFExcelWorkbook.output: Output creation on filename (string) input being null, and created output parameter with the type BytesIO linked to workbook itself

playground

example of converting nested objects {sheet>column>row} input from json format into excel format

from hfexcel import HFExcel
from hfexcel.schemas import DEFAULT_SCHEMA


excel_data = {
    "sheets": [
        {
            "key": "sheet1",
            "name": "Example Sheet 1",
            "columns": [
                {
                    "name": "Column 1",
                    "width": 2,
                    "args": [
                        "headline"
                    ],
                    "rows": [
                        {
                            "data": "Column 1 Row 1"

                        },
                        {
                            "data": "Column 1 Row 2"
                        }
                    ]
                },
                {
                    "name": "Column 2",
                    "rows": [
                        {
                            "data": "Column 2 Row 1",
                        },
                        {
                            "data": "Column 2 Row 2",
                        }
                    ]
                },
                {
                    "name": "Column 3",
                    "rows": [
                        {
                            "data": "Column 3 Row 1"
                        },
                        {
                            "data": "Column 3 Row 2"
                        }
                    ]
                }
            ]
        }
    ],
    "styles": [
        {
            "name": "headline",
            "style": {
                "bold": 1,
                "font_size": 14,
                "font": "Arial",
                "align": "center"
            }
        }
    ]
}

hf_workbook = HFExcel.hf_workbook('example.xlsx', set_default_styles=False)
hf_workbook.filter().populate_with_json(excel_data, schema=DEFAULT_SCHEMA)
hf_workbook.save()

example of object-oriented python syntax

from hfexcel import HFExcel

hf_workbook = HFExcel.hf_workbook('example.xlsx', set_default_styles=False)

hf_workbook.add_style(
    "headline", 
    {
        "bold": 1,
        "font_size": 14,
        "font": "Arial",
        "align": "center"
    }
)

sheet1 = hf_workbook.add_sheet("sheet1", name="Example Sheet 1")

column1, _ = sheet1.add_column('headline', name='Column 1', width=2)
column1.add_row(data='Column 1 Row 1')
column1.add_row(data='Column 1 Row 2')

column2, _ = sheet1.add_column(name='Column 2')
column2.add_row(data='Column 2 Row 1')
column2.add_row(data='Column 2 Row 2')


column3, _ = sheet1.add_column(name='Column 3')
column3.add_row(data='Column 3 Row 1')
column3.add_row(data='Column 3 Row 2')

# In order to get a row with coordinates:
# sheet[column_index][row_index] => row
print(sheet1[1][1].data)
assert(sheet1[1][1].data == 'Column 2 Row 2')

hf_workbook.save()

example of converting inline index-based {sheet>[column:row]} input from json format into excel format

from hfexcel import HFExcel
from hfexcel.extras import InlineInputHelper

excel_data = {
    "sheets": [
        {
            "key": "sheet1",
            "name": "Example Sheet 1",
            "columns": [
                {
                    "name": "Column 1",
                    "width": 2,
                    "args": [
                        "headline"
                    ]
                },
                {
                    "name": "Column 2"
                }
            ],
            "rows": [
                [
                    {
                        "data": "Column 1 Row 1"

                    },
                    {
                        "data": "Column 2 Row 1"
                    }
                ],
                [
                    {
                        "data": "Column 1 Row 2"

                    },
                    {
                        "data": "Column 2 Row 2"
                    }
                ]
            ]
        }
    ],
    "styles": [
        {
            "name": "headline",
            "style": {
                "bold": 1,
                "font_size": 14,
                "font": "Arial",
                "align": "center"
            }
        }
    ]
}

hf_workbook = HFExcel.hf_workbook(filename, set_default_styles=False)
InlineInputHelper(hf_workbook).populate_with_json(excel_data)
hf_workbook.save()
return True

example output file

contributors

  • @ebsaral - author
  • feel free to contribute

dependencies

warning

  • Happy path tests are written.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hfexcel-0.0.17.tar.gz (6.8 kB view hashes)

Uploaded source

Built Distribution

hfexcel-0.0.17-py3-none-any.whl (10.6 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page