Skip to main content

The Holoscan SDK: building high-performance AI streaming applications

Project description

Holoscan SDK

The Holoscan SDK Python Wheel is part of NVIDIA Holoscan, the AI sensor processing platform that combines hardware systems for low-latency sensor and network connectivity, optimized libraries for data processing and AI, and core microservices to run streaming, imaging, and other applications, from embedded to edge to cloud. It can be used to build streaming AI pipelines for a variety of domains, including Medical Devices, High Performance Computing at the Edge, Industrial Inspection and more.

Getting Started

Visit the Holoscan User Guide to get started with the Holoscan SDK.

Prerequisites

  • Prerequisites for each supported platform are documented in the user guide. Note that the python wheels have a lot of optional dependencies which you may install manually based on your needs (see compatibility matrix at the bottom).
  • The Holoscan SDK python wheels are only formally tested on Ubuntu 22.04. They are, however, expected to work on any Linux distribution with glibc 2.35 or above (see output of ldd --version) and CUDA Runtime 12.2 or above.
  • Python: 3.9 to 3.12

Troubleshooting

Version 0.6.0 gets installed instead of the latest version

The latest version of the wheels were built and tested on Ubuntu 22.04 with glibc 2.35. You'll need to switch to a Linux distribution with a more recent version of glibc to use the Holoscan SDK python wheels 1.0 or above (check your version with ldd --version), or use the Holoscan SDK NGC container instead.

ERROR: Could not find a version that satisfies the requirement holoscan==<version>
ERROR: No matching distribution found for holoscan==<version>

Same as above, OR incompatible python version.

libc.so.6: version 'GLIBC_2.32 not found
libstdc++.so.6: version `GLIBCXX_3.4.29` not found

Same as above.

ImportError: libcudart.so.12: cannot open shared object file: No such file or directory

CUDA runtime is missing from your system (required even for CPU only pipelines).

  • x86_64: two options
    • A) System Installation: Follow the official installation steps for installing the whole toolkit, which should at least include apt install cuda-runtime-dev-12-6.
    • B) PIP installation:
      python3 -m pip install nvidia-cuda-runtime-cu12
      export CUDA_WHL_LIB_DIR=$(python3 -c 'import nvidia.cuda_runtime; print(nvidia.cuda_runtime.__path__[0])')/lib
      export LD_LIBRARY_PATH="$CUDA_WHL_LIB_DIR:$LD_LIBRARY_PATH"
      
  • IGX Orin: Ensure the compute stack is installed.
  • Jetson: Re-install JetPack 6.0.
catastrophic error: cannot open source file "vector_types.h"

CUDA Runtime headers are missing from your system.

Resolution: same as above.

Reference: https://docs.cupy.dev/en/latest/install.html#cupy-always-raises-nvrtc-error-compilation-6

Error: libnvinfer.so.8: cannot open shared object file: No such file or directory
...
Error: libnvonnxparser.so.8: cannot open shared object file: No such file or directory

TensorRT is missing from your system (note that it is only needed by the holoscan.operators.InferenceOp operator.).

  • x86_64: Follow the official installation steps.
    • A) System Installation: Follow the official installation steps.
    • B) PIP installation:
      python3 -m pip install tensorrt-libs~=8.6.1 --index-url https://pypi.nvidia.com
      export TRT_WHL_LIB_DIR=$(python3 -c 'import tensorrt_libs; print(tensorrt_libs.__path__[0])')
      export CUDNN_WHL_LIB_DIR=$(python3 -c 'import nvidia.cudnn; print(nvidia.cudnn.__path__[0])')/lib
      export CUBLAS_WHL_LIB_DIR=$(python3 -c 'import nvidia.cublas; print(nvidia.cublas.__path__[0])')/lib
      export LD_LIBRARY_PATH="$TRT_WHL_LIB_DIR:$CUDNN_WHL_LIB_DIR:$CUBLAS_WHL_LIB_DIR:$LD_LIBRARY_PATH"
      
  • IGX Orin: Ensure the compute stack is installed.
  • Jetson: Re-install JetPack 6.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

holoscan-3.4.0-cp312-cp312-manylinux_2_35_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.35+ x86-64

holoscan-3.4.0-cp312-cp312-manylinux_2_35_aarch64.whl (37.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.35+ ARM64

holoscan-3.4.0-cp311-cp311-manylinux_2_35_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.35+ x86-64

holoscan-3.4.0-cp311-cp311-manylinux_2_35_aarch64.whl (37.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.35+ ARM64

holoscan-3.4.0-cp310-cp310-manylinux_2_35_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.35+ x86-64

holoscan-3.4.0-cp310-cp310-manylinux_2_35_aarch64.whl (37.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.35+ ARM64

holoscan-3.4.0-cp39-cp39-manylinux_2_35_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.35+ x86-64

holoscan-3.4.0-cp39-cp39-manylinux_2_35_aarch64.whl (37.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.35+ ARM64

File details

Details for the file holoscan-3.4.0-cp312-cp312-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for holoscan-3.4.0-cp312-cp312-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 b10f4bb3b57038ed3b6bad877904b1c0e587ce4dd2a08b5810b7902a6f7b910a
MD5 7dbf485768d0c2fef2433436f0a543d1
BLAKE2b-256 49085fb8346bd71b65e752755261ed7e8732a79be8cd1b803186ce7dae15837f

See more details on using hashes here.

File details

Details for the file holoscan-3.4.0-cp312-cp312-manylinux_2_35_aarch64.whl.

File metadata

File hashes

Hashes for holoscan-3.4.0-cp312-cp312-manylinux_2_35_aarch64.whl
Algorithm Hash digest
SHA256 7bebb43408d5c7010ae9c36cc4981887f4a5932f05a1b0ecb0e6b6e5bea64e44
MD5 a4481c87f2fe226dade4ac79a804101d
BLAKE2b-256 83325fbe3226c744875eb4d56265326fa95b416909c2b64b4abb9b1b89e5c095

See more details on using hashes here.

File details

Details for the file holoscan-3.4.0-cp311-cp311-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for holoscan-3.4.0-cp311-cp311-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 5ca239e66cb4fbdad2d152250b1852b3bdc0e9f9e82e3e9294c288db2b690748
MD5 a9ce601f658850cfe029b539d9d7cab3
BLAKE2b-256 8fd7940f9960a3168833672d9a240152874086bd79522642db318bb596e9628d

See more details on using hashes here.

File details

Details for the file holoscan-3.4.0-cp311-cp311-manylinux_2_35_aarch64.whl.

File metadata

File hashes

Hashes for holoscan-3.4.0-cp311-cp311-manylinux_2_35_aarch64.whl
Algorithm Hash digest
SHA256 866aa36296b1e1ac4e79cc477a883e238f996929e28455512ca2a8867e3ae4d2
MD5 4a6c0d472e30e28382bc8c3c8e68b857
BLAKE2b-256 f4938452ef036316e8299910c60a61ba830efe24a864cfe55034ebc1a5d5edb8

See more details on using hashes here.

File details

Details for the file holoscan-3.4.0-cp310-cp310-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for holoscan-3.4.0-cp310-cp310-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 a553a9fcf240cf55721bae152a063a25748ac4c3b9c73ec82089ea670eb0aadc
MD5 9e12ccbe07e0354c3ebed3e6aa12df15
BLAKE2b-256 c94c8d43167cbbe4ead36d541cf1f8b297c458f7510b24e7c106c178c18c73ee

See more details on using hashes here.

File details

Details for the file holoscan-3.4.0-cp310-cp310-manylinux_2_35_aarch64.whl.

File metadata

File hashes

Hashes for holoscan-3.4.0-cp310-cp310-manylinux_2_35_aarch64.whl
Algorithm Hash digest
SHA256 db30ab65f38775b1a2e6733beca01321dabf1215980ff1de7c88000ff9399bf2
MD5 3a9bd74d5479754b86ec03491674ba8d
BLAKE2b-256 b5a84b4abde5fb16617d69256b8200f0311ea64e212ba8a4db336096e5b63876

See more details on using hashes here.

File details

Details for the file holoscan-3.4.0-cp39-cp39-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for holoscan-3.4.0-cp39-cp39-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 f4ecf3d60d3d92dc6a1298b7d7ab6d813915fb39b6faa2c65296389a7d363635
MD5 e4c0e952bffe56511e22d968b8d465c9
BLAKE2b-256 24a30716a2283386d48b554e311b3c9c1c457146ab80ba117429c26531f4ef9c

See more details on using hashes here.

File details

Details for the file holoscan-3.4.0-cp39-cp39-manylinux_2_35_aarch64.whl.

File metadata

File hashes

Hashes for holoscan-3.4.0-cp39-cp39-manylinux_2_35_aarch64.whl
Algorithm Hash digest
SHA256 b470db1b3eb13c43187b9920839a0fb599b51b5124194835aaa2c77eeef073e6
MD5 ff5d5ea9225574742a133514eb27fc5f
BLAKE2b-256 a26f7615aec11baba08dbf19dbc104ea34db7ae4ae416776498095ffdb164a02

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page