Skip to main content

a fast prototyping library for DL research

Project description

homura document

master dev
pytest pytest

homura is a fast prototyping library for DL research.

🔥🔥🔥🔥 homura (焰) is flame or blaze in Japanese. 🔥🔥🔥🔥

Requirements

Minimal requirements

Python>=3.9
PyTorch>=1.9.0
torchvision>=0.10.0

Installation

pip install -U homura-core

or

pip uninstall homura
pip install -U git+https://github.com/moskomule/homura

Optional

faiss (for faster kNN)
accimage (for faster image pre-processing)
cupy (homura)
opt_einsum (for accelerated einsum)

test

pytest .

APIs

Basics

homura aims abstract (e.g., device-agnostic) simple prototyping.

from homura import optim, lr_scheduler
from homura import trainers, reporters
from homura.vision import MODEL_REGISTRY, DATASET_REGISTRY
from torch.nn import functional as F

train_loader, test_loader, num_classes = DATASET_REGISTRY('dataset_name')(...)
# User does not need to care about the device
model = MODEL_REGISTRY('model_name')(num_classes=num_classes)

# Model is registered in optimizer lazily. This is convenient for distributed training and other complicated scenes.
optimizer = optim.SGD(lr=0.1, momentum=0.9)
scheduler = lr_scheduler.MultiStepLR(milestones=[30, 80], gamma=0.1)

with trainers.SupervisedTrainer(model,
                                optimizer,
                                F.cross_entropy,
                                reporters=[reporters.TensorboardReporter(...)],
                                scheduler=scheduler) as trainer:
    # epoch-based training
    for _ in trainer.epoch_iterator(num_epochs):
        trainer.train(train_loader)
        trainer.scheduler.step()
        trainer.test(test_loader)
        trainer.scheduler.step()

    # otherwise, iteration-based training

    trainer.run(train_loader, test_loader,
                total_iterations=1_000, val_intervals=10)

    print(f"Max Accuracy={max(trainer.history['accuracy']['tests'])}")

You can customize iteration of trainer as follows.

from homura.trainers import TrainerBase, SupervisedTrainer
from homura.metrics import accuracy

trainer = SupervisedTrainer(...)


# from v2020.08, iteration is much simpler

def iteration(trainer: TrainerBase,
              data: Tuple[torch.Tensor, torch.Tensor]
              ) -> None:
    input, target = data
    output = trainer.model(input)
    loss = trainer.loss_f(output, target)
    trainer.reporter.add('loss', loss.detach())
    trainer.reporter.add('accuracy', accuracy(input, target))
    trainer.reporter.add('')
    if trainer.is_train:
        trainer.optimizer.zero_grad()
        loss.backward()
        trainer.optimizer.step()
        # in case schedule is step-wise
        trainer.scheduler.step()


SupervisedTrainer.iteration = iteration
# or   
trainer.update_iteration(iteration) 

dict of models, optimizers, loss functions are supported. This is useful for GANs, for example.

trainer = CustomTrainer({"generator": generator, "discriminator": discriminator},
                        {"generator": gen_opt, "discriminator": dis_opt},
                        {"reconstruction": recon_loss, "generator": gen_loss},
                        **kwargs)

reporter internally tracks the values during each epoch and reduces after every epoch. Therefore, users can compute mIoU, for example, as

from homura.metrics import confusion_matrix


def cm_to_miou(cms: List[torch.Tensor]) -> torch.Tensor:
    # cms: list of confusion matrices
    cm = sum(cms).float()
    miou = cm.diag() / (cm.sum(0) + cm.sum(1) - cm.diag())
    return miou.mean().item()


def iteration(trainer: TrainerBase,
              data: Tuple[torch.Tensor, torch.Tensor]
              ) -> None:
    input, target = data
    output = trainer.model(input)
    trainer.reporter.add('miou', confusion_matrix(output, target), reduction=cm_to_miou)
    ...

Distributed training

Distributed training is complicated at glance. homura has simple APIs, to hide the messy codes for DDP, such as homura.init_distributed for the initialization and homura.is_master for checking if the process is master or not.

For details, see examples/imagenet.py.

Reproducibility

These methods make randomness deterministic in its context.

from homura.utils.reproducibility import set_deterministic, set_seed

with set_deterministic(seed):
    # suppress nondeterministic computation
    # but will affect the performance
    something()

with set_seed(seed):
    # only set random seed of Python, PyTorch and Numpy
    other_thing()

Registry System

Following major libraries, homura also has a simple registry system.

from homura import Registry

MODEL_REGISTRY = Registry("language_models")


@MODEL_REGISTRY.register
class Transformer(nn.Module):
    ...


# or

MODEL_REGISTRY.register(bert_model, 'bert')

# magic
MODEL_REGISTRY.import_modules(".")

transformer = MODEL_REGISTRY('Transformer')(...)
# or
bert = MODEL_REGISTRY('bert', ...)

Examples

See examples.

Citing

@misc{homura,
    author = {Ryuichiro Hataya},
    title = {homura},
    year = {2018},
    howpublished = {\url{https:/github.com/moskomule/homura}},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

homura-core-2021.12.1.tar.gz (53.6 kB view hashes)

Uploaded Source

Built Distribution

homura_core-2021.12.1-py3-none-any.whl (67.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page