Skip to main content

Python package for creating and analyzing Higher-order networks from sequential dataset

Project description

HONyx

HONyx is a Python package for generating and analyzing Higher-Order Networks models

Usage

>>> import honyx
>>> import networkx as nx

>>> sequences = [['a','b','r','a','c','a','d','a','b','r','a']]
>>> fon2 = honyx.generate_hon(sequences, "fix-order", max_order = 2)

>>> pos = nx.spring_layout(fon2)
>>> node_cols = ['blue' if len(v)==1 else 'green' for v in fon2.nodes()]
>>> nx.draw(fon2, pos = pos, with_labels=True, node_size=1000, node_color = node_cols, alpha=0.5)
>>> nx.draw_networkx_edge_labels(fon2, pos, edge_labels = nx.get_edge_attributes(fon2,'weight'))

Order 2 Network

>>> honyx.pagerank_hon(fon2)
{'a': 0.40849881734049087,
 'd': 0.14318783763461537,
 'c': 0.1478373488011564,
 'r': 0.15427265837422358,
 'b': 0.14620333784951386}

Citing

To cite HONyx, please use the following publication:

Julie Queiros, François Queyroi (2023). 
Construction de Réseaux d'Ordre Supérieur à partir de Traces : Méthodes et Outils. 
https://hal.science/hal-04085138 

PDF BibTeX

Install

Using Python 3.8, 3.9, or 3.10.

Install the latest version of HONyx:

$ pip install honyx

Required dependancies include NetworkX, Numpy and Scipy.

License

Released under the MIT license (see LICENSE.txt)::

Copyright (C) 2004-2023 HONyx Developers
Julie Queiros <julie.queiros@univ-nantes.fr>
François Queyroi <francois.queyroi@univ-nantes.fr>
Simon Artus <simon.artus@etu.univ-nantes.fr>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

honyx-0.1.1.tar.gz (424.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

honyx-0.1.1-py3-none-any.whl (21.2 kB view details)

Uploaded Python 3

File details

Details for the file honyx-0.1.1.tar.gz.

File metadata

  • Download URL: honyx-0.1.1.tar.gz
  • Upload date:
  • Size: 424.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for honyx-0.1.1.tar.gz
Algorithm Hash digest
SHA256 980ba13fa2c7c5d53c7c6449025a63bac52c946283c16acc3efc48ca70ee12f3
MD5 e0807d3d6dac824c13b329344ad9b679
BLAKE2b-256 1878377246cbf3c5d86f4a2af77593527f46ae6d92dfd3cbfbd2436eab7576e5

See more details on using hashes here.

File details

Details for the file honyx-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: honyx-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 21.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for honyx-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 81db1509205fc663f787f84edd59aec977c6b6089e679c6ec351dfbdab58fd14
MD5 890899c8d97d2f87e312665724924155
BLAKE2b-256 73a7b1f551d59b5af0be60283e79d4b8596199c9a0dbca073f731ad8a37d74ab

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page