A Python wrapper for the HGS-CVRP solver
Project description
PyHygese
This package is under active development. It can introduce breaking changes anytime. Please use it at your own risk.
A solver for the Capacitated Vehicle Routing Problem (CVRP)
This package provides a simple Python wrapper for the Hybrid Genetic Search solver for Capacitated Vehicle Routing Problems (HGS-CVRP).
The installation requires gcc, make, and cmake to build.
On Windows, for example, you can install them by scoop install gcc make cmake using Scoop.
Then, install the PyHygese package:
pip install hygese
CVRP Example (random)
import numpy as np
import hygese as hgs
n = 20
x = (np.random.rand(n) * 1000)
y = (np.random.rand(n) * 1000)
# Solver initialization
ap = hgs.AlgorithmParameters(timeLimit=3.2) # seconds
hgs_solver = hgs.Solver(parameters=ap, verbose=True)
# data preparation
data = dict()
data['x_coordinates'] = x
data['y_coordinates'] = y
# You may also supply distance_matrix instead of coordinates, or in addition to coordinates
# If you supply distance_matrix, it will be used for cost calculation.
# The additional coordinates will be helpful in speeding up the algorithm.
# data['distance_matrix'] = dist_mtx
data['service_times'] = np.zeros(n)
demands = np.ones(n)
demands[0] = 0 # depot demand = 0
data['demands'] = demands
data['vehicle_capacity'] = np.ceil(n/3).astype(int)
data['num_vehicles'] = 3
data['depot'] = 0
result = hgs_solver.solve_cvrp(data)
print(result.cost)
print(result.routes)
NOTE: The result.routes above does not include the depot. All vehicles start from the depot and return to the depot.
another CVRP example
# A CVRP from https://developers.google.com/optimization/routing/cvrp
import numpy as np
import hygese as hgs
data = dict()
data['distance_matrix'] = [
[0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
[548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
[776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
[696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
[582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
[274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
[502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
[194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
[308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
[194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
[536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
[502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
[388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
[354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
[468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
[776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
[662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0]
]
data['num_vehicles'] = 4
data['depot'] = 0
data['demands'] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8]
data['vehicle_capacity'] = 15 # different from OR-Tools: homogeneous capacity
data['service_times'] = np.zeros(len(data['demands']))
# Solver initialization
ap = hgs.AlgorithmParameters(timeLimit=3.2) # seconds
hgs_solver = hgs.Solver(parameters=ap, verbose=True)
# Solve
result = hgs_solver.solve_cvrp(data)
print(result.cost)
print(result.routes)
TSP example
# A TSP example from https://developers.google.com/optimization/routing/tsp
import hygese as hgs
data = dict()
data['distance_matrix'] = [
[0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972],
[2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579],
[713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260],
[1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987],
[1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371],
[1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999],
[2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701],
[213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099],
[2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600],
[875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162],
[1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200],
[2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504],
[1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0],
]
# Solver initialization
ap = hgs.AlgorithmParameters(timeLimit=0.8) # seconds
hgs_solver = hgs.Solver(parameters=ap, verbose=True)
# Solve
result = hgs_solver.solve_tsp(data)
print(result.cost)
print(result.routes)
Algorithm Parameters
Configurable algorithm parameters are defined in the AlgorithmParameters dataclass with default values:
@dataclass
class AlgorithmParameters:
nbGranular: int = 20
mu: int = 25
lambda_: int = 40
nbElite: int = 4
nbClose: int = 5
targetFeasible: float = 0.2
seed: int = 1
nbIter: int = 20000
timeLimit: float = 0.0
useSwapStar: bool = True
Others
A Julia wrapper is available: Hygese.jl
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file hygese-0.0.0.10.tar.gz.
File metadata
- Download URL: hygese-0.0.0.10.tar.gz
- Upload date:
- Size: 10.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/6.1.0 CPython/3.12.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
df5025ed1071c9595493e66a320a60472ff947b72b1ae3c663269a664d8745b0
|
|
| MD5 |
c3c93c98675a4f686b9593fd16ad3c04
|
|
| BLAKE2b-256 |
5d169daa61c277b228ae9fdd43c3ae88507492272142addbec925d39c7466f1b
|
Provenance
The following attestation bundles were made for hygese-0.0.0.10.tar.gz:
Publisher:
pypi.yml on chkwon/PyHygese
-
Statement:
-
Statement type:
https://in-toto.io/Statement/v1 -
Predicate type:
https://docs.pypi.org/attestations/publish/v1 -
Subject name:
hygese-0.0.0.10.tar.gz -
Subject digest:
df5025ed1071c9595493e66a320a60472ff947b72b1ae3c663269a664d8745b0 - Sigstore transparency entry: 189921332
- Sigstore integration time:
-
Permalink:
chkwon/PyHygese@2ca81ead6da2bb684217e7cd383eeffb05107e5b -
Branch / Tag:
refs/tags/v0.0.0.10 - Owner: https://github.com/chkwon
-
Access:
public
-
Token Issuer:
https://token.actions.githubusercontent.com -
Runner Environment:
github-hosted -
Publication workflow:
pypi.yml@2ca81ead6da2bb684217e7cd383eeffb05107e5b -
Trigger Event:
push
-
Statement type: