Skip to main content

A Python wrapper for the HGS-CVRP solver

Project description

PyHygese

Build Status codecov PyPI version

This package is under active development. It can introduce breaking changes anytime. Please use it at your own risk.

A solver for the Capacitated Vehicle Routing Problem (CVRP)

This package provides a simple Python wrapper for the Hybrid Genetic Search solver for Capacitated Vehicle Routing Problems (HGS-CVRP).

The installation requires gcc, make, and cmake to build. On Windows, for example, you can install them by scoop install gcc make cmake using Scoop. Then, install the PyHygese package:

pip install hygese

CVRP Example (random)

import numpy as np 
import hygese as hgs

n = 20
x = (np.random.rand(n) * 1000)
y = (np.random.rand(n) * 1000)

# Solver initialization
ap = hgs.AlgorithmParameters(timeLimit=3.2)  # seconds
hgs_solver = hgs.Solver(parameters=ap, verbose=True)

# data preparation
data = dict()
data['x_coordinates'] = x
data['y_coordinates'] = y

# You may also supply distance_matrix instead of coordinates, or in addition to coordinates
# If you supply distance_matrix, it will be used for cost calculation.
# The additional coordinates will be helpful in speeding up the algorithm.
# data['distance_matrix'] = dist_mtx

data['service_times'] = np.zeros(n)
demands = np.ones(n)
demands[0] = 0 # depot demand = 0
data['demands'] = demands
data['vehicle_capacity'] = np.ceil(n/3).astype(int)
data['num_vehicles'] = 3
data['depot'] = 0

result = hgs_solver.solve_cvrp(data)
print(result.cost)
print(result.routes)

NOTE: The result.routes above does not include the depot. All vehicles start from the depot and return to the depot.

another CVRP example

# A CVRP from https://developers.google.com/optimization/routing/cvrp
import numpy as np 
import hygese as hgs 

data = dict()
data['distance_matrix'] = [
    [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
    [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
    [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
    [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
    [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
    [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
    [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
    [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
    [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
    [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
    [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
    [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
    [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
    [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
    [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
    [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
    [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0]
]
data['num_vehicles'] = 4
data['depot'] = 0
data['demands'] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8]
data['vehicle_capacity'] = 15  # different from OR-Tools: homogeneous capacity
data['service_times'] = np.zeros(len(data['demands']))

# Solver initialization
ap = hgs.AlgorithmParameters(timeLimit=3.2)  # seconds
hgs_solver = hgs.Solver(parameters=ap, verbose=True)

# Solve
result = hgs_solver.solve_cvrp(data)
print(result.cost)
print(result.routes)

TSP example

# A TSP example from https://developers.google.com/optimization/routing/tsp
import hygese as hgs 

data = dict()
data['distance_matrix'] = [
    [0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972],
    [2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579],
    [713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260],
    [1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987],
    [1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371],
    [1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999],
    [2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701],
    [213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099],
    [2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600],
    [875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162],
    [1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200],
    [2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504],
    [1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0],
] 

# Solver initialization
ap = hgs.AlgorithmParameters(timeLimit=0.8)  # seconds
hgs_solver = hgs.Solver(parameters=ap, verbose=True)

# Solve
result = hgs_solver.solve_tsp(data)
print(result.cost)
print(result.routes)

Algorithm Parameters

Configurable algorithm parameters are defined in the AlgorithmParameters dataclass with default values:

@dataclass
class AlgorithmParameters:
    nbGranular: int = 20
    mu: int = 25
    lambda_: int = 40
    nbElite: int = 4
    nbClose: int = 5
    targetFeasible: float = 0.2
    seed: int = 1
    nbIter: int = 20000
    timeLimit: float = 0.0
    useSwapStar: bool = True

Others

A Julia wrapper is available: Hygese.jl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hygese-0.0.0.10.tar.gz (10.1 kB view details)

Uploaded Source

File details

Details for the file hygese-0.0.0.10.tar.gz.

File metadata

  • Download URL: hygese-0.0.0.10.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for hygese-0.0.0.10.tar.gz
Algorithm Hash digest
SHA256 df5025ed1071c9595493e66a320a60472ff947b72b1ae3c663269a664d8745b0
MD5 c3c93c98675a4f686b9593fd16ad3c04
BLAKE2b-256 5d169daa61c277b228ae9fdd43c3ae88507492272142addbec925d39c7466f1b

See more details on using hashes here.

Provenance

The following attestation bundles were made for hygese-0.0.0.10.tar.gz:

Publisher: pypi.yml on chkwon/PyHygese

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page