Skip to main content

Image classification models. Keras.

Project description


[![PyPI version](https://badge.fury.io/py/image-classifiers.svg)](https://badge.fury.io/py/image-classifiers) [![Build Status](https://travis-ci.com/qubvel/classification_models.svg?branch=master)](https://travis-ci.com/qubvel/classification_models)
# Classification models Zoo
Trained on [ImageNet](http://www.image-net.org/) classification models. [Keras](https://keras.io/).

### Architectures:
- [VGG](https://arxiv.org/abs/1409.1556) [16, 19]
- [ResNet](https://arxiv.org/abs/1512.03385) [18, 34, 50, 101, 152]
- [ResNeXt](https://arxiv.org/abs/1611.05431) [50, 101]
- [SE-ResNet](https://arxiv.org/abs/1709.01507) [18, 34, 50, 101, 152]
- [SE-ResNeXt](https://arxiv.org/abs/1709.01507) [50, 101]
- [SE-Net](https://arxiv.org/abs/1709.01507) [154]
- [DenseNet](https://arxiv.org/abs/1608.06993) [121, 169, 201]
- [Inception ResNet V2](https://arxiv.org/abs/1602.07261)
- [Inception V3](http://arxiv.org/abs/1512.00567)
- [Xception](https://arxiv.org/abs/1610.02357)
- [NASNet](https://arxiv.org/abs/1707.07012) [large, mobile]
- [MobileNet](https://arxiv.org/pdf/1704.04861.pdf)
- [MobileNet v2](https://arxiv.org/abs/1801.04381)

### Specification
The top-k accuracy were obtained using center single crop on the
2012 ILSVRC ImageNet validation set and may differ from the original ones.
The input size used was 224x224 (min size 256) for all models except:
- NASNetLarge 331x331 (352)
- InceptionV3 299x299 (324)
- InceptionResNetV2 299x299 (324)
- Xception 299x299 (324)

The inference \*Time was evaluated on 500 batches of size 16.
All models have been tested using same hardware and software.
Time is listed just for comparison of performance.

| Model |Acc@1|Acc@5|Time*|Source|
|-----------------|:---:|:---:|:---:|------|
|vgg16 |70.79|89.74|24.95|[keras](https://github.com/keras-team/keras-applications)|
|vgg19 |70.89|89.69|24.95|[keras](https://github.com/keras-team/keras-applications)|
|resnet18 |68.24|88.49|16.07|[mxnet](https://github.com/Microsoft/MMdnn)|
|resnet34 |72.17|90.74|17.37|[mxnet](https://github.com/Microsoft/MMdnn)|
|resnet50 |74.81|92.38|22.62|[mxnet](https://github.com/Microsoft/MMdnn)|
|resnet101 |76.58|93.10|33.03|[mxnet](https://github.com/Microsoft/MMdnn)|
|resnet152 |76.66|93.08|42.37|[mxnet](https://github.com/Microsoft/MMdnn)|
|resnet50v2 |69.73|89.31|19.56|[keras](https://github.com/keras-team/keras-applications)|
|resnet101v2 |71.93|90.41|28.80|[keras](https://github.com/keras-team/keras-applications)|
|resnet152v2 |72.29|90.61|41.09|[keras](https://github.com/keras-team/keras-applications)|
|resnext50 |77.36|93.48|37.57|[keras](https://github.com/keras-team/keras-applications)|
|resnext101 |78.48|94.00|60.07|[keras](https://github.com/keras-team/keras-applications)|
|densenet121 |74.67|92.04|27.66|[keras](https://github.com/keras-team/keras-applications)|
|densenet169 |75.85|92.93|33.71|[keras](https://github.com/keras-team/keras-applications)|
|densenet201 |77.13|93.43|42.40|[keras](https://github.com/keras-team/keras-applications)|
|inceptionv3 |77.55|93.48|38.94|[keras](https://github.com/keras-team/keras-applications)|
|xception |78.87|94.20|42.18|[keras](https://github.com/keras-team/keras-applications)|
|inceptionresnetv2|80.03|94.89|54.77|[keras](https://github.com/keras-team/keras-applications)|
|seresnet18 |69.41|88.84|20.19|[pytorch](https://github.com/Cadene/pretrained-models.pytorch)|
|seresnet34 |72.60|90.91|22.20|[pytorch](https://github.com/Cadene/pretrained-models.pytorch)|
|seresnet50 |76.44|93.02|23.64|[pytorch](https://github.com/Cadene/pretrained-models.pytorch)|
|seresnet101 |77.92|94.00|32.55|[pytorch](https://github.com/Cadene/pretrained-models.pytorch)|
|seresnet152 |78.34|94.08|47.88|[pytorch](https://github.com/Cadene/pretrained-models.pytorch)|
|seresnext50 |78.74|94.30|38.29|[pytorch](https://github.com/Cadene/pretrained-models.pytorch)|
|seresnext101 |79.88|94.87|62.80|[pytorch](https://github.com/Cadene/pretrained-models.pytorch)|
|senet154 |81.06|95.24|137.36|[pytorch](https://github.com/Cadene/pretrained-models.pytorch)|
|nasnetlarge |**82.12**|**95.72**|116.53|[keras](https://github.com/keras-team/keras-applications)|
|nasnetmobile |74.04|91.54|27.73|[keras](https://github.com/keras-team/keras-applications)|
|mobilenet |70.36|89.39|15.50|[keras](https://github.com/keras-team/keras-applications)|
|mobilenetv2 |71.63|90.35|18.31|[keras](https://github.com/keras-team/keras-applications)|

###### Note
[SE-]ResNeXt and SENet models build with `GroupConvolution` which
is not implemented in Keras/TensorFlow. For correct work of `load_model` function
custom object is used. To be able to load one of these models from file, please,
import `classification_models` before.

### Weights
| Name |Classes | Models |
|-------------------------|:--------:|:---------:|
|'imagenet' |1000 |all models |
|'imagenet11k-place365ch' |11586 |resnet50 |
|'imagenet11k' |11221 |resnet152 |


### Installation

Requirements:
- python >= 3.5
- keras >= 2.1.0
- tensorflow >= 1.9

###### Note
This library does not have TensorFlow in a requirements for installation.
Please, choose suitable version (‘cpu’/’gpu’) and install it manually using
official Guide (https://www.tensorflow.org/install/).

PyPI package:
```bash
$ pip install image-classifiers
```
Latest version:
```bash
$ pip install git+https://github.com/qubvel/classification_models.git
```

### Examples

##### Loading model with `imagenet` weights:

1) Direct way (keras-applications like)
```python
from classification_models.resnet import ResNet18, preprocess_input

model = ResNet18((224, 224, 3), weights='imagenet')
```

2) Using `Classifiers` container
```python
from classification_models import Classifiers

classifier, preprocess_input = Classifiers.get('resnet18')
model = classifier((224, 224, 3), weights='imagenet')
```
This way take one additional line of code, however if you would
like to train several models you do not need to import them directly,
just access everything through `Classifiers`.

You can get all model names using `Classifiers.names()` method.

##### Inference example:

```python
import numpy as np
from skimage.io import imread
from skimage.transfrom import resize
from keras.applications.imagenet_utils import decode_predictions

from classification_models.resnet import ResNet18, preprocess_input

# read and prepare image
x = imread('./imgs/tests/seagull.jpg')
x = resize(x, (224, 224)) * 255 # cast back to 0-255 range
x = preprocess_input(x)
x = np.expand_dims(x, 0)

# load model
model = ResNet18(input_shape=(224,224,3), weights='imagenet', classes=1000)

# processing image
y = model.predict(x)

# result
print(decode_predictions(y))
```

##### Model fine-tuning example:
```python
import keras
from classification_models.resnet import ResNet18, preprocess_input

# prepare your data
X = ...
y = ...

X = preprocess_input(X)

n_classes = 10

# build model
base_model = ResNet18(input_shape=(224,224,3), weights='imagenet', include_top=False)
x = keras.layers.AveragePooling2D((7,7))(base_model.output)
output = keras.layers.Dense(n_classes)(x)
model = keras.models.Model(inputs=[base_model.input], outputs=[output])

# train
model.compile(optimizer='SGD', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(X, y)
```


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

image_classifiers-0.2.0.tar.gz (45.9 kB view details)

Uploaded Source

Built Distribution

image_classifiers-0.2.0-py2.py3-none-any.whl (76.5 kB view details)

Uploaded Python 2Python 3

File details

Details for the file image_classifiers-0.2.0.tar.gz.

File metadata

  • Download URL: image_classifiers-0.2.0.tar.gz
  • Upload date:
  • Size: 45.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for image_classifiers-0.2.0.tar.gz
Algorithm Hash digest
SHA256 2a0fffb91ea3943a7b7e198c4e207e11a71fd45776cacb3d54852d4f27706242
MD5 0a902f53b558cf39b3c9b8f1b6d53797
BLAKE2b-256 95b5ad75eb085acb0f4c442fc995c23c752321fe353d69abf6459990139415df

See more details on using hashes here.

File details

Details for the file image_classifiers-0.2.0-py2.py3-none-any.whl.

File metadata

  • Download URL: image_classifiers-0.2.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 76.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for image_classifiers-0.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 89c862834da893ce64bb8728e472df3dbec2cb662d0c12ab29d9a0ff2082df90
MD5 cbba207c672ee6a454a11babec6d0dba
BLAKE2b-256 de32a1e74e03f74506d1e4b46bb2732ca5a7b18ac52a36b5e3547e63537ce74c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page